

Supplementary Ground Investigation

Land at Middlegate Road West

Frampton Kirton Lincolnshire PE20 1DA

Prepared for:

Larkfleet Homes

Falcon Way Bourne Lincolnshire PE10 0FF

EPS Reference Number: UK16.2241 B

Date Issued: 25th January 2019

Report Status: Issue 1

LAND AT MIDDLEGATE ROAD WEST - KIRTON

NON TECHNICAL ENGINEERING SUMMARY

- Previous investigations identified the use of shallow foundations may be applicable across the site.
 However, it is understood the proposed development for the site requires the raising of site levels
 by between 1.0 and 1.7m and it is therefore suggested that a piled foundation solution would be
 the most applicable.
- A preliminary analysis of allowable bearing capacity from a piled foundation solution is provided below. This takes into account the raising of site levels by around 1.5m with a compressible fill material.

Depth of Pile Below Existing	Pile Length	Allowable Working Load (kN) (CFA Pile)			
Ground Level (m bgl)	(m, allowing for raising levels)	300mm Diameter Pile	400mm Diameter Pile		
10	12	85	135		
12	14	170	250		
14	16	250	365		

- Given the presence of compressible materials across the site an analysis of settlement due to the
 filling of the site has been undertaken. The settlements stated should be allowed for in the design
 of services and utilities whereby the differential between settlements of buildings and the wider
 site will be to be considered.
- The River Terrace Deposits have a Design Sulphate Class (DS) of DS-1 with an aggressive chemical environment for concrete (ACEC) of AC-1. For the lower Ampthill Clay, a classification of DS-5 and AC-4s is given, which is a particularly high concrete grade and may require special protective measures. However, the most suitable class will be defined by the foundation solution chosen and the use of piles may be able to mitigate this high somewhat.

The above points represent a simplified summary of the findings of this assessment and should not form the basis for key decisions for the proposed development. A thorough review of the details is contained within the following report, or alternatively get in touch and we'll talk you through it.

Project Reference:	UK16.2241 B					
Title:	• • •	Supplementary Ground Investigation Land at Belton Lane, Manthorpe				
Client:	Larkfleet Homes					
Date:	25 th January 2019					
EPS Contact Details:	7B Caxton House Broad Street Cambourne Cambridge CB23 6JN	T: 01954 710666 F: 01954 710677 E: info@epstrategies.co.uk W: www.epstrategies.co.uk				
Status:	Issue 1					

Author:	Reviewed:	Authorised:
for faith	Stulled	Stulled
Sam Setchell	Steve Bullock	Steve Bullock
Senior Consultant	Director	Director

This report has been prepared for the client(s) listed on the report title page. EPS accepts no liability or responsibility for use of, or reliance upon, this report and / or the information contained within it by third parties.

No part of this report, or references to it, may be included in published documents of any kind without approval from EPS.

This report and its contents, together with any supporting correspondence or other documentation, remain the property of Environmental Protection Strategies Ltd until paid for in full.

Where ground investigations have been conducted, these have been limited to the level of detail required for the site in order to achieve the objectives of the investigation.

The report has been written, reviewed and authorised by the persons listed above. It has also undergone EPS' quality management inspection. Should you require any further assistance regarding the information provided within the report, please do not hesitate to contact us.

The National Planning Policy Framework 2012 requires a competent person to prepare site investigation information, which is defined as a person with a recognised relevant qualification, sufficient experience in dealing with the type(s) of pollution or land instability, and membership of a relevant professional organisation. EPS considers that it fulfils these criteria and would welcome any request for staff CVs or case studies to demonstrate it.

As stated within DEFRA's Contaminated Land Statutory Guidance (2012), with any complex risk assessment it is possible that different suitably qualified people may reach slightly different conclusions when interpreting the same information. EPS recognises this and considers the conclusions presented within this report to be robust and appropriate but input from the Local Authority and their judgement in line with this guidance would still be welcomed.

TABLE OF CONTENTS

1	INTRODUCTION	1
1.1	Scope of Work	1
1.2	Limitations and Constraints	2
2	SUMMARY OF PREVIOUS REPORTS	3
3	SUMMARY OF INTRUSIVE INVESTIGATIONS	4
3.1	Exploratory Hole Locations	4
3.2	In Situ Testing & Soil Sampling	4
3.3	Laboratory Testing	
4	FINDINGS OF THE INVESTIGATION	
4.1	Ground Conditions	
4.1.1	Topsoil	5
4.1.2	Tidal Flat Deposits	5
4.1.3	Ampthill Clay	6
4.2	Groundwater	
4.3	Physical Evidence of Contamination	6
4.4	Geotechnical Testing	7
4.4.1	Laboratory Testing	7
4.4.2	In Situ Testing	8
5	GEOTECHNICAL APPRAISAL	9
5.1.1	Spread Foundations	9
5.1.2	Raft Foundation	9
5.2	Ground Improvement	9
5.2.1	Vibro-Compaction	9
5.2.2	Vibro Stone Columns	9
5.2.3	Vibro-Concrete Columns	10
5.2.4	Controlled Modulus Columns	10
5.2.5	Piles	10
5.3	Ground Floor Construction	11
5.4	Settlement Assessment	11
5.5	Impacts of Settlement	11
5.6	Groundworks	11
5.6.1	Excavations	11
5.6.2	Raising Levels	12
5.7	Concrete Grade	12

Supplementary Ground Investigation Middlegate Road West - Kirton

EPS Ref: UK16.2241 B

Figures

Figure 1 Site Location Plan
Figure 2 Borehole Location Plan

Tables

Table 1 Geotechnical Laboratory Testing Schedule

Appendices

Appendix A
 Appendix B
 Appendix C
 Appendix C
 Appendix D
 Appendix D

Proposed Development Plans
Site Specific Borehole Logs
Geological Cross Sections
Laboratory Results-Geotechnical

1 INTRODUCTION

Environmental Protection Strategies Ltd (EPS) was commissioned by Larkfleet Homes to complete a Supplementary Ground Investigation for a plot of land to the north of Middlegate Road, Kirton, Lincolnshire, PE20 1DA (the 'site'); see Figure 1.

The work was commissioned to provide supplementary geotechnical information on subsurface soil conditions across the site in order to allow the assessment of suitable foundation solutions and to assess potential settlements associated with raising levels. Supplementary geotechnical assessment was recommended within a previous *Phase I and II Geo-Environmental Assessment* undertaken by EPS in April 2017 (Ref: UK16.2241), in conjunction with which this report should be read.

The proposed development plans including external elevations and site drainage are included as Appendix A.

This report presents the findings, conclusions, and recommendations of the Supplementary Ground Investigation, undertaken as instructed.

The objectives of this investigation were as follows:

a) To collect information on ground conditions/ strength and make appropriate recommendations for design of the proposed scheme.

1.1 Scope of Work

To perform an exploratory assessment of the site in accordance with the principles and requirements of BS5930:2015 'Code of Practice for Ground Investigation' the following tasks were undertaken:

Site Work:

- Site walkover, inspection and obtaining photographic records.
- Health and safety briefing/ site supervision.
- Drilling of 6 boreholes to a maximum depth of 20m bgl using cable percussive (shell and auger) drilling rig.

Reporting:

- Data collection and Interpretation
- Reporting.

The findings and conclusions of these investigations are presented in the following sections.

1.2 Limitations and Constraints

The purpose of this report is to present the findings of a geotechnical investigation conducted at the location(s) specified. When examining the data collected from the investigations made during the assessment, Environmental Protection Strategies Ltd (EPS) makes the following statements:

No investigation method is capable of completely identifying all ground conditions that might be present in the soil or groundwater under a site. Where outlined in our report, we have examined the ground beneath a site by constructing a number of invasive ground probing. The locations of these probing's are considered to be representative of the condition of the whole site subsurface however, ground conditions are naturally variable and it may be possible that the ground conditions encountered may differ to those encountered during the investigation.

No visible evidence of Japanese Knotweed was identified during the site walkover, however this plant can be difficult to identify in the early stages of growth and therefore it is not always possible to identify its presence at certain times of the year. For this reason EPS cannot confirm that Japanese Knotweed rhizomes do not exist and it is recommended that if it is suspected that this species, or other similarly invasive plants are present at the site, a specialist contractor should be commissioned to make a detailed assessment.

The investigation was carried out to assess the significance of the underlying ground conditions as identified in this report. Unless EPS has otherwise indicated, no assessment of potential impact of any other previous uses has been made.

If third parties have been contracted / consulted during compilation of this report, the validity of any data they may have supplied, and which are included in the report, have been assessed as far as possible by EPS. However, EPS cannot guarantee the validity of these data.

2 SUMMARY OF PREVIOUS REPORTS

A previous Phase I and II Geo-Environmental Assessment was undertaken by EPS in April 2017 (Ref: UK16.2241). The pertinent geotechnical findings of which are outlined below:

Ground conditions were found to consist of a layer of topsoil underlain by Tidal Flat Deposits. These deposits were encountered as very loose to medium dense, clayey silts and sands and were found to the maximum depth of the boreholes undertaken (4.0m). Groundwater was recorded at approximately 2-3m across the site, within the tidal flat deposits.

It was concluded that, while shallow soils may be suitable for the use of conventional spread foundation at a low allowable bearing capacity $(50kN/m^2)$, the requirement to raise levels across the site reduce this capacity due to the increase in overburden and settlements that would be induced.

It was therefore considered that the option of a piled foundation would be more appropriate, with possible founding strata as the underlying Ampthill Clay which was not identified in the investigation. The report recommended that deep boreholes be undertaken across the site in order to inform the pile design.

3 SUMMARY OF INTRUSIVE INVESTIGATIONS

Intrusive ground investigations were undertaken between the 10th and 19th of October 2018 in accordance with EPS standard operating procedures, copies of which will be made available on request. A summary of all site activities is presented in the following sections:

3.1 Exploratory Hole Locations

Exploratory hole locations were selected through consideration of the proposed development layout, the location of below ground utilities as well as operational and health & safety considerations. Borehole locations were agreed with the client prior to proceeding with the works.

A borehole location plan is presented as Figure 2.

3.2 In Situ Testing & Soil Sampling

Each borehole was logged for ground conditions encountered and inspected for any physical evidence of contamination, such as soil staining, odour and the presence of separate phase liquids on a precautionary basis. Borehole logs are presented in Appendix B.

Standard or cone penetration tests (SPT / CPT) were carried out in all materials using an automatic trip hammer. The number of blows required to advance a standard split spoon, (or solid 60° nose cone for the CPT test) over the final 300mm of a 450mm total drive was recorded, and is shown on the borehole records at the penetration resistance ("N" value).

3.3 Laboratory Testing

Geotechnical testing was undertaken by Soil Property Testing, Huntingdon, a UKAS accredited laboratory. Samples obtained for analysis of pH and Sulphate content were submitted to Exova Jones Environmental of Flintshire, who hold appropriate UKAS / MCERT accreditation for the required testing. Samples were transported in laboratory supplied containers and delivered to the laboratory by approved courier.

Copies of chain of custody documentation are held by EPS and will be made available on request.

The schedule of testing is included as Table 1. The results of classification and strength testing are also shown on the borehole logs (Appendix B).

4 FINDINGS OF THE INVESTIGATION

This section of the report provides a summary of the findings of the various aspects of the ground investigation.

4.1 Ground Conditions

A total of six cable percussive (shell & auger) boreholes were formed, three to a depth of 20m and three to a depth of 15m, the ground conditions encountered, from ground level, were found to comprise:

- Topsoil
- Tidal Flat Deposits
- Ampthill Clay

Site specific borehole logs are included as Appendix B with cross sections in Appendix C and give descriptions and depths of strata encountered. A summary of the general strata encountered across the site is provided in the table below, with more detailed description given in the following sub sections:

Geological Strata	Maximum Depth to Base of Strata(m bgl)	Strata Thickness (m)		
Topsoil	0.6	0.3-0.6		
Tidal Flat Deposits	8.3	6.8-8.0		
Ampthill Clay Formation	>20.0m	Unproven (>12.9m)		

4.1.1 Topsoil

Topsoil was encountered in all borehole locations and extended to between 0.3 and 0.6m depth. Topsoil was a light brown silty clay in the field to the east where a potato crop had recently been harvested. To the west of and centre of the site the topsoil was a darker brown silty clay and when wet was found to become soft and difficult to track across with the drilling rig (clayey).

4.1.2 Tidal Flat Deposits

Tidal flat deposits were found to underlie the site beneath the topsoil. This material comprised predominately soft to firm silts and clays with sand lenses. Very soft organic (peaty) clay layers have also been identified within these deposits between 4-6m as well as beds of fine sands. The base of the deposits is marked by a bed of brown fine sand in the west of the site (BH03-BH06) but this is not seen to the east (BH01 & BH02). Tidal flat deposits were fully penetrated between 7.1m (BH04) and 8.3m in BH03. Adjusting for site levels suggests that this depth is relatively consistent at between -5 and -6m AOD.

A generalised profile of the Tidal flat deposits is as follows:

Soil Type	Inferred Soil Strength	Approximate Depth Range (m bgl)		
Silty CLAY	Soft to Firm (20-40kPa)	0.3-2.5		
Clayey /sandy SILT (occasionally peaty)	Very Soft to Soft (15-25kPa)	2.5-6		
Sandy CLAY/SAND (occasional gravel)	Firm / Medium Dense (40-75kPa)	6-8		

Further details on the lateral variation of this profile can be seen in the provided geological cross sections in Appendix C.

4.1.3 Ampthill Clay

A stiff to very stiff brown slightly gravelly slightly sandy silty calcareous clay was identified beneath the tidal flat deposits in all boreholes to the maximum extent (>20m). The gravel within this material was identified as chalk and flint and the drillers described the material as a 'boulder clay'. A flint bounder was identified at 19m in BH03.

This materials has been initially classified as representative of the Ampthill Clay, which is shown to be present in geological mapping. The field and laboratory description of the material, particularly in relation to the presence of chalk and flint gravels, suggest that this material may well be glacial in origin. However, for simplicity, this has been henceforth referred to as the Ampthill Clay.

This material has been found to be stiff (high strength) at the top of the unit becoming very stiff (very high strength).

4.2 Groundwater

Groundwater was struck within the tidal flat deposits in all boreholes. Two to three strikes were noted in each location and were found to be associated with beds in which sand lenses or more granular materials were noted. The shallowest water strike was at 2.2m within BH04 which showed slow ingress. This was sealed out at 6.3m. At the end drilling the boreholes, which were cased until the Ampthill clay was encountered, all boreholes were dry. This suggests all water strikes were associated with perched water within the superficial deposits.

4.3 Physical Evidence of Contamination

No made or reworked ground was identified other than the recently worked topsoil materials. There was therefore no palpable evidence of contamination, waste or putrefiable material encountered in any of the sampling locations during the investigation including no visual or olfactory evidence of hydrocarbon staining.

4.4 Geotechnical Testing

4.4.1 Laboratory Testing

The results of geotechnical laboratory testing are summarised in the table below and all geotechnical sample results obtained from the laboratory are included as Appendix D. The key results of laboratory testing on geotechnical soil samples are summarised below.

		Range of Parameters								
Strata	Moisture Content (%)		Plasticity Index (%)		Soil Fraction (%)			()	Cu (kPa)	
	Min	Max	Min	Max	Gravel	Sand	Silt	Clay	Min	Max
Tidal Flat Deposits	14.1	57.1	9(6)	16(14)	0-10	15-82	5-51	2-34	-	-
Ampthill Clay	13.6	18.9	23(16)	24 (22)	-	-	-	-	87	302

(#) = Modified Plasticity Index

The natural moisture content was established for five samples of cohesive soil in accordance with BS1377 Part 1:7.3 and BS1377: Part 2:3.2.

Atterberg limit tests were undertaken on six samples of cohesive soils in accordance with BS1377: Part 1:7.4 and BS1377: Part 2:3.2&4.2.

Particle size distribution tests were undertaken on five samples of granular material in accordance with BS1377: Part 2: 1990. Clause 9.2.

Multistage undrained triaxial compression tests (without measurement of pore pressure) were undertaken on eleven undisturbed samples. Tests were carried out in accordance with BS1377: Part 7: 1990:8.

One-Dimensional Consolidation testing was undertaken on one undisturbed sample. Tests were carried out in accordance with BS1377: Part 5: 1990:3.5.

A laboratory analysis testing schedule is presented as Table 1.

4.4.2 In Situ Testing

Standard or cone penetration tests (SPT / CPT) were carried out in all materials using an automatic trip hammer. These tests were undertaken at alternative depths within cohesive materials in order to allow for undisturbed sampling. The results of this testing are summarised in the chart below:

The in-situ testing highlights the present of soft materials (SPT N < 5) within to top 5m of surficial deposits. A general increase is seen within the granular materials between 5-8m from which point the stiff Ampthill Clay is encountered and SPT N vales increase with depth.

5 GEOTECHNICAL APPRAISAL

This investigation has confirmed that the predominantly soft silty tidal flat deposits are present across the site and are found to continue to a depth of around 8m. Underlying this material stiff clay becoming very stiff clay is identified. Triaxial testing has shown this material to be of very high to extremely high strength. As noted in the previous phase of investigation, it is possible that shallow foundations may be suitable for use across the site with a low bearing capacity. However, it is understood that the proposed development scheme requires that at least 1m of fill materials are to be placed on existing soils (post stripping of topsoil) in order to reach design levels to meet minimum floor levels stipulated in the site specific planning requirements. Therefore, the influence of this additional loading will have an effect on the performance of any foundation or ground improvement options presented below.

5.1.1 Spread Foundations

As stated in the previous investigation, shallow subsurface soils may be suitable for low bearing capacity traditional foundations. However due to the requirement for site levels to be raised by up to 1.7m of using imported materials (As detailed in Appendix A) the underlying soil is expected to be excessively loaded, thus negating their use.

5.1.2 Raft Foundation

Raft foundations may also be considered for the site, but would need to be designed for a low bearing capacity, in the region of $30\text{-}40\text{kN/m}^2$. This bearing capacity would effectively be restrained by the quality of the imported fill materials as well as the presence of the underlying compressible silts and clay. Consideration should also be given to the presence of these soft materials throughout the top 6.0m of the soil profile, settlements in excess 30mm are to be expected with the predicted loadings related to the requirement for raising of site levels any further addition to this loading may result in settlements deemed unacceptable.

5.2 Ground Improvement

5.2.1 Vibro-Compaction

Vibro-compaction is a ground improvement technique that works by re-arranging the grains of a granular soil into a denser configuration by vibrating them to depth with a specially designed tool. This technique is only suitable for granular soils and is not recommended for this site due to the presence of cohesive soils throughout the soil profile as well as the requirement to raise levels.

5.2.2 Vibro Stone Columns

Vibro Stone Columns work on a similar principal to the vibro-compaction technique, however a hollow vibrating poker is used to create a cavity in the soil which is then backfilled with hard inert stone, free of clay and silt fines. The technique requires the host soils to be capable of retaining the stone inserted and subsequently compacted.

The soft silts and clays present at the targeted improvement depths are likely to be unsuitable for the insertion of stone columns as they are of low strength and may not provide the lateral confinement required for the columns to be formed. However, specialist advice on the suitability of this technique from a ground improvement contractor should be sought.

Specialist contractors suggest that this technique is not suitable for 'organic soils, peat and very soft clays'.

5.2.3 Vibro-Concrete Columns

Vibro Concrete Columns (VCC) offer a ground improvement method similar to the above without the risk of losing the included material amongst the soft soils. This is achieved by the insertion of fresh concrete into the hole via the vibro poker head with the additional control of designed pumping and withdrawal rates. This technique may be suitable and may present a cost effective alternative solution to traditional piling methods. However, it is a technique best suited for limited thicknesses of weak or soft soils, and the depths seen at this site may be too great, specialist advice on suitability from a ground improvement contractor should be sought.

5.2.4 Controlled Modulus Columns

Controlled Modulus Columns (CMC) are a semi-rigid inclusion similar to VCC whereby concrete grouting is undertaken after displacing the surrounding soils with a specially adapted hollow stem auger. This improvement method is designed to be applicable in difficult soil types such as peat and soft organic clays. The ultimate aim being an improved site in which standard strip footings could be installed with slabs-on-grade. This technique may be applicable at this site but given the application of a proprietary technology specialist advice on suitability and design from the contractor should be sought.

5.2.5 Piles

Given the low strength of the superficial soils and the requirement to raise site levels by in excess of 1.0m across the area, the use of a piled foundation should be considered, and may well be the most appropriate, in order to transfer the load of the proposed buildings across the variable tidal flat deposits and into the underlying stiff clay.

Piles are considered likely to terminate in the underlying Ampthill Clay Formation, and carry their loads in a combination of end bearing and skin friction, although only limited positive contribution to pile capacity is likely through the Tidal Flat Deposits. Where levels are raised, the effects of negative skin friction will also need to be considered. Furthermore, it should be noted that the groundwater was recorded at shallow depth and care must be taken to ensure that the piling method provides sound piles below groundwater.

A preliminary assessment of potential pile capacities has been provided in the table below, although in view of the wide variety of piles sizes available, and the range of installation plant and techniques, the design of the piles should be carried out by, and should remain the responsibility of the specialist piling contractor, who will reflect their own methods, experience and design procedures within their proposals.

Depth of Pile Below	Pile Length	Allowable Working Load (kN) (CFA Pile)			
Existing Ground Level	(m bgl, allowing for	300mm Diameter	400mm Diameter		
(m bgl)	raising levels)	Pile	Pile		
10	12	85	135		
12	14	170	250		
14	16	250	365		

Notes: A Factor of Safety of 2.5 has been adopted.

It should be noted that the above pile capacities take into account the effect of negative skin friction due to raising of levels and consolidation of underlying soft soils. Reductions as based on a raise in levels by 1.5m using a compressible fill as well as a groundwater level 2m below existing.

5.3 Ground Floor Construction

Given the presence of low strength soils and the requirement to raise levels throughout the proposed development, the use of suspended ground floor construction is recommended.

5.4 Settlement Assessment

As detailed above, it is intended that levels will be raised across the site, predominantly to relieve flood risk issues. This will lead to settlement of the underlying sensitive soils, particularly given their very soft to soft nature.

A summary of approximate settlement undertaken for subsurface soils present in relation to potential loadings is included within the following table:

Applied Vertical	Potential Magnitude of			
Stress (kN/m²)	Total Settlement (mm)			
10 (0.5m fill)	5-10			
20 (1.0m fill)	15-20			
30 (1.5m fill)	20-25			
40 (2.0m fill)	30-35			

This table indicates the calculated range of magnitude of total settlement of the underlying soils expected for a defined load; which have been estimated to represent potential construction scenarios given the nature of current development proposals. The settlements for loadings of up to $40 kN/m^2$ are presented to show anticipated settlement resulting from raising site levels. The range in magnitudes has been calculated using 'typical' and 'worst case' consolidation factors reported by the laboratory for soils at a given depth, which gives an indication of potential variation in settlement which could be expected depending on the composition of the soils recovered.

5.5 Impacts of Settlement

Services will have to be designed to allow for settlement in the range of the above quoted figures. Particular consideration should be given to the connections of services that run from proposed buildings (which are assumed to be piled) and external areas. The difference in settlements between these two locations will have to be allowed for in utility and service design.

5.6 Groundworks

5.6.1 Excavations

Whilst excavations in cohesive soils may remain stable for short periods during construction the long term stability of these and any excavations in made or disturbed ground should not be relied upon in unsupported excavations. Excavations in granular material will require proposer design and support.

Heavy plant and stockpiles of materials should not be permitted close to the edges of unsupported excavations.

Further reference may be made to CIRIA Report No. 97 'Trenching Practice' 1992.

On the basis of the findings of the ground investigation, significant quantities of groundwater are unlikely to be encountered within shallow excavations for foundations however in deeper excavations, such as may be required for drainage, some dewatering may be required.

5.6.2 Raising Levels

It is understood that around 1.5m of fill material will be placed over the sites surface in order to raise levels. Detailed below are some generic recommendation for the filling process.

- In general, any fill should comply with the 'Manual of Contact Documents for Highways Works, Volume 1, Specification for Highways Works', amended November 2007. Compaction of the fill materials shall be in accordance with Table 6/4 of the Specification for Highways Works.
- Immediately prior to placing the first layer of fill, all surfaces upon which fill is to be placed should be cleaned of all objectionable materials in an approved manner. Such surfaces shall have all water removed from depressions and shall be properly monitored to obtain a suitable bond with the fill.
- Fill should be prepared by levelling, moistening (if required) and rolling so that the surface materials will be compacted and will provide a satisfactory bonding surface.
- Materials to be used for fill, which for whatever reason become, or when placed are too wet for
 immediate compaction shall be placed in temporary stockpiles or removed until the moisture
 content is reduced sufficiently to permit adequate compaction. Conversely, excavated material
 with a moisture content lower than that required, to ensure adequate compaction shall be
 wetted before placement.

Prior to placement, it is recommended that the fill shall be tested for the following:-

- Classification (Particle Size Distribution/Plasticity Index)
- Optimum Dry Density (2.5kg compaction)
- Natural Moisture Content
- Chemical Suitability

The in-situ competency of any fill should be checked at regular intervals to ensure that they are placed to the required effort.

5.7 Concrete Grade

Sulphate contents and pH values determinations were carried out by the analytical laboratory, the results of which are also included within Appendix D. Results for concrete grade are summarised within the following table, and have been divided into results applicable to soils recovered from both strata of natural soils to assess different properties of the two materials and subsequent design classifications.

Strata	Sulp	Soluble Shate l SO4)	P	Н	Total Potential Sulphate (%)		
	Min	Max	Min	Max	Min	Max	
Tidal Flat Deposits	37.2	194.9	8.35	8.63	NA		
Ampthill Clay	217.8	326.5	8.46	9.09	2.91	11.4	

The above suggest that Tidal Flat Deposits have a Design Sulphate Class (DS) of DS-1 with an aggressive chemical environment for concrete (ACEC) of AC-1.

For the lower Ampthill Clay, a classification of DS-5 and AC-4s is given, which is a particularly high concrete grade and will require special protective measures. This classification is based on analysis of 6 samples taken from across the depth of the unit, all of which had Total Potential Sulphate levels within the DS-5 classification.

It should be noted that the classification for the Ampthill Clay (DS-5, AC-4s) has been driven by the total potential sulphate value. The values for pH and the water-soluble sulphate, however, give a class of DS-1 with AC-1s.

The most suitable class will ultimately depend on the nature of the final foundation solution, given the potential use of piling at the site, it should be noted that the BRE Special Digest 1 'Concrete in Aggressive Ground' 2005 states "Concrete in pyritic ground which is initially low in soluble sulphate does not have to be designed to withstand a high potential sulphate class unless it is exposed to ground which has been disturbed to the extent that contained pyrite might oxidise and the resultant sulphate ions reach the concrete. This may prompt redesign of the structure or construction process to avoid ground disturbance; for example, by using precast or cast in-situ piles instead of constructing a spread footing within an excavation".

FIGURES

Title: Site Location Plan

Project: Middlegate Road, Kirton

Fig No: 1

 Scale:
 NTS

 Drawn By:
 SSe
 Approved By:
 MB

 Job No:
 UK16.2241 B

 Dwg No:
 Kirton/0119/01

 Date:
 January 2019

Project Id: UK16.2241 B

Project Title: Middlegate Road, Kirton Location: Kirton, Lincolnshire Client: Larkfleet Homes Title: Figure 2: Borehole Location Plan

Scale: 1:5000
Engineer: Sam Setchell
Contractor: T. Bedford Drillin

Legend Key

TABLES

Table 1 – Laboratory Testing Schedule (Geotechnical)

Sample ID	Top Depth (m bgl)	Moisture Content	Liquid / Plastic Limits	PSD	Triaxial Test	1D Consolid ation
BH01	3.20			1		
BH01	6.10	1	1			
BH01	6.70	1	1			
BH01	9.20				1	
BH01	15.20				1	
BH01	18.20				1	
BH02	7.90	1	1			
BH02	10.10				1	
BH02	13.10				1	
BH03	5.00			1		
BH03	6.75	1	1			
BH03	7.40			1		
BH03	8.50				1	
BH03	11.50				1	
BH04	8.50				1	
BH05	2.20			1		
BH05	4.20			1		
BH05	9.00				1	
BH05	18.00				1	
BH06	1.20					1
BH06	10.50	1	1			
BH06	13.50		1		1	

Notes

mbgl meters below ground level

1 Sample Taken
- Sample Not Analysed

PSD Particle Size Distribution (by wet sieve)
CBR California Bearing Ration Test
EPS Geotechnical Suite Dissolved and Total Sulphates

APPENDICES

APPENDIX A

Proposed Development Plans

Key
Assumed 110mm upstand + 1:30 footway
Assumed 25mm upstand + 1:25 VC or 1:30 Footway
Assumed flush + Flat across swale + 1:30 footwat

Title: Proposed Development Development Plan

Project: Middlegate Road, Kirton

Appendix A

Job No: UK16.2241 B

Date: January 2019

APPENDIX B

Site Specific Borehole Logs

eps							Во	reho	le Log	Borehole No. BH01 Sheet 1 of 2				
Projec	t Name:	ne: Middledate Road Kirton I			Middlegate Road, Kirton			Projec UK16.	t No. 2241 B		Co-ords:	-5426E - 6970974N	Hole Type CP	
Locatio	on:	Kirton, Lincolnshire		olnshire				Level:	2.66 m AOD	Scale 1:50				
Client:		Larkfleet Homes		omes				Dates:	10-10-2018	Logged By				
Well	veli I a		Sample and In Situ Testing Type In Situ Results						Depth (m)	Level (m)	Legend		Stratum Description	
		Deput (III)	Туре	III Situ Nesuits	0.30	2.66	<u> </u>	TOPSOIL Firm brown	friable silty CLAY					
		1.20 - 1.65 1.20	D SPT	N=3 (1,2/1,1,0,1)			X			1 :				
		2.20	SPT	N=5 (1,1/1,1,1,2)	2.50	2.36	<u> </u>	Soft brown	sandy slightly clayey SILT with sand					
		3.20 - 3.70 3.20	B SPT	N=1 (1,0/1,0,0,0) PSD CL: 4 PSD SI: 37 PSD SA: 59 PSD GR: 0						3 -				
		4.20 - 4.65 4.20	D SPT	N=3 (1,1/1,1,1,0)			X			4 -				
		5.20 - 5.65 5.20	D SPT	N=2 (1,0/1,0,1,0)			X			5				
		6.10 - 6.20	D	PI: 16	6.05 6.25	0.16 -3.39	× × × × × × × × × × × × × × × × × × ×	organic CL	ark grey slightly gravelly slightly sand AY. Gravel is fine to medium black flii	nt.				
		6.20 - 6.65 6.20 6.70 - 8.20	D SPT B	MC: 57.1 N=10 (2,2/2,2,3,3) PI: 9 MC: 14.1				organic CL	light olive brown slightly gravelly san AY with occasional grey mottling. Gra white fine to coarse angular to subrou	avel is brown,				
		7.70	SPT	N=17 (1,2/2,4,6,5)	7.90	-3.59		Stiff brown	grey gravelly CLAY . Gravel is chalk	8 -				
		8.70 - 8.80	D		8.50	-5.24	× × × × × × × × × × × × × × × × × × ×	dark grey s with occasi	hard (Very high strength to Extremei lightly gravelly slightly sandy silty cal onal dark greyish brown mottling. Gra ubangular to rounded chalk and rare	careous CLAY avel is white fine				
		9.20 - 9.65	U	Ublow=90 UU: 234.0 UU: 245.0 UU: 257.0			X X X X X X X X X X X X X X X X X X X							
Remar	ks						<u>_</u>			10				

										Borehole I	No.
(295						Bo	rehc	le Log	BH01	1
								T		Sheet 2 o	
Projec	t Name:	Midd	legate	Road, Kirton	Project UK16.	t No. 2241 B		Co-ords:	-5426E - 6970974N	Hole Typ CP	е
Location	on:	Kirto	n, Linco	olnshire				Level:	2.66 m AOD	Scale	
										1:50 Logged E	3v
Client:		Larkf	fleet Ho	omes			1	Dates:	10-10-2018	Logged L	, y
Well	Water Strikes			In Situ Testing	Depth (m)	Level (m)	Legend		Stratum Descrip	tion	
X//XX//	Olines	Depth (m)	Туре	In Situ Results	(111)	(111)	▽ ^ →	Verv stiff to	o hard (Very high strength to E	extremely hight strength)	
							× × →	dark grey	slightly gravelly slightly sandy sional dark greyish brown mott	silty calcareous CLAY	=
							\times	to coarse	subangular to rounded chalk a	and rare flint.	1 =
		10.70	SPT	N=32 (4,4/7,8,8,9)			\times				
							\times				11 -
							\times				
							× ×				
							\times				
							× ×				12 —
		12.20 - 12.65	U	Ublow=90			\times				
		12.03					\times				-
							\times				
							\times				13 —
							\times				1 =
							× ×				
		13.70	SPT	N=50 (5,6/50 for			\times				
				170mm)			× ×				14 —
							× ×				
							\times]
							\times				
							× × →				15 —
		15.20 -	U	Ublow=90			× × →				
		15.65		UU: 256.0			× × →				1 3
				UU: 269.0 UU: 274.0			× × →				
				00. 274.0			× × →				16
							× × →				10
							× × →				
		16.70	SPT	N=41			× × →				
				(6,7/9,10,10,12)			× × →				17
							×_×_×				17 —
							×_×_×				
							×_×_×				
							×_×_×				
		18.20 -	U	Ublow=90			×_×_×				18 —
		18.65					x_x_x				
				UU: 332.0 UU: 346.0			\times				
				UU: 352.0			\times				=
							\times				19 _
							\times				=
		19.55	SPT	N=45 (6,7/10,11,12,12)			x_x_x				
				(0,1/10,11,12,12)			x_x_x				
<u> </u>					20.00	-5.84			End of Borehole at 20	0.000m	20 —

Remarks

eps						reho	Borehole No. BH02			
ject Name:	Midd	legate	Road, Kirton	Projec	t No. 2241 B		Co-ords:	Sheet 1 of 2 Hole Type CP		
ation:	Kirto	n, Linc	olnshire	OICTO.	0.0.0.22 11.0			2.71 m AOD	Scale 1:50	
nt:	Larkf	leet Ho	omes				Dates:	11-10-2018	Logged By	
Water Strikes			In Situ Testing	Depth (m)	Level (m)	Legend		Stratum Description		
Ottikes	Depth (m)	Туре	In Situ Results	(111)	(111)		TOPSOIL			
	1.20 2.20 3.20	SPT SPT SPT	N=3 (1,1/1,0,1,1) N=4 (1,1/1,1,1,1) N=2 (1,0/1,0,1,0) N=3 (1,1/1,1,1,0)	2.45	2.71	X		ILT with rare sand beds		
	4.75	SPT	N=9 (1,2/2,2,2,3)	4.70	0.26	<u>x</u> ×x×x	Loose to m	edium dense grey fine SAND		
	5.90	SPT	N=11 (2,2/2,3,3,3)	5.75	-1.99		Firm brown sand lense:	to grey slightly organic sandy gravs	velly CLAY with	
	7.40 7.90 - 8.40	SPT	N=16 (1,2/2,3,5,6) PI: 23	7.55	-3.04	X X X	occasional	slightly gravelly slightly sandy silty dark grey mottling, and orange sta halk and flint.		
	8.60	SPT	MC: 18.9 N=27 (4,4/5,7,8,7)	8.40	-4.84	x x x x x x x x x x x x x x x x x x x	sandy silty mottling, ar	fery high strength) dark grey slight calcareous CLAY with occasional nd rare decayed roots. Gravel is wi to rounded chalk and light grey m	dark greyish brown hite fine to coarse	

										Borehole	No.
(2 9 5						Во	reho	le Log	ВН0	2
										Sheet 2	of 2
Projec	t Name:	Midd	llegate	Road, Kirton	Project UK16.	t No. .2241 B		Co-ords:	-5554E - 6970803N	Hole Ty CP	rpe
Location	on:	Kirto	n, Linc	olnshire				Level:	2.71 m AOD	Scale 1:50	
Client:		Larkt	fleet Ho	omes				Dates:	11-10-2018	Logged	
Well	Water	Sampl	e and	In Situ Testing	Depth	Level	Legend		Stratum Descri	intion	
	Strikes	Depth (m)		In Situ Results	(m)	(m)	Logona				
		10.10 - 10.55 11.60	SPT	Ublow=85 UU: 214.0 UU: 229.0 UU: 242.0 N=27 (4,4/5,7,6,9) Ublow=90 UU: 230.0 UU: 262.0 UU: 281.0			X	sandy silty mottling, a	Very high strength) dark grey calcareous CLAY with occa and rare decayed roots. Grav ir to rounded chalk and light;	sional dark greyish brown el is white fine to coarse	11
		14.55	SPT	N=32 (5,6/7,8,8,9)	15.00	-5.69	x x x x x x		End of Borehole at a	15.000m	15 —
Remar											20 —

Remarks

ер	S				Borehole No. BH03 Sheet 1 of 2					
ject Nam	e: Midd	llegate	Road, Kirton	-	Project No. UK16.2241 B			-5841E - 6970950N	Hole Type CP	
ation:	Kirto	n, Lince	olnshire				Level:	2.82 m AOD	Scale 1:50	
nt:	Lark	fleet Ho	omes				Dates:	12-10-2018	Logged By	
Wate Strike	_		In Situ Testing	Depth (m)	Level (m)	Legend		Stratum Description		
Strike	Depth (m)	Туре	In Situ Results	(111)	(111)		TOPSOIL			
	1.20	SPT	N=4 (1,2/1,1,1,1)	0.30	2.82	X X X X X X X X X X X X X X X X X X X	Firm brown	n friable SILT/CLAY		
	2.20	SPT	N=3 (1,1/1,1,1,0)							
	3.20	SPT	N=2 (1,0/1,1,0,0)			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
	4.00	SPT	N=2 (1,0/1,0,1,0)	3.75	2.52	X	Soft grey S	SILT		
	5.00 - 5.45 5.00	D SPT	N=8 (1,1/2,1,2,3) PSD CL: 2 PSD SI: 16 PSD SA: 82 PSD GR: 0	4.80	-0.93		Loose to m	nedium dense brown silty slightly cla	yey SAND.	
	6.00	SPT	N=9 (1,2/2,2,2,3)	5.80	-1.98	alic alic alic alic alic alic alic alic	Soft to firm gravel	grey slightly organic sandy CLAY w	vith occasional	
	6.75 - 7.20 6.75	D SPT	N=13 (2,2/2,3,4,4) PI: 15 MC: 16.4	6.60	-2.98	X X X	Firm to Stif CLAY with chalk and f	f light olive brown slightly gravelly strare bluish grey mottling. Gravel is flint.	ightly sandy silty ine to medium	
	7.40 - 7.90 7.40	B SPT	N=14 (1,2/2,3,5,4) PSD CL: 6 PSD SI: 5 PSD SA: 79 PSD GR: 10	7.30	-3.78		brown, blac	ense brown gravelly silty clayey SAN ck and white angular to subangular prown subrounded quartzite.	ID. Gravel is flint and occasional	
	8.50 - 8.95	U	Ublow=75 UU: 111.0 UU: 132.0 UU: 145.0	8.30 8.60	-4.48 -5.48	× × × × × × × × × × × × × × × × × × ×	silty calcare to rounded Very stiff (\	strength) very dark grey slightly graveous CLAY. Gravel is white fine to more chalk and rare fine to coarse flint. Very high strength) brown slightly graeous CLAY. Gravel is white fine to m	nedium subangular avelly slightly sandy	
	10.00	SPT	N=29 (4,5/8,7,6,8)			X				

6	sps						Во	reho	ole Log	Borehole N BH03 Sheet 2 or	3
roject	Name:	Midd	legate	Road, Kirton		Project No. UK16.2241 B			-5841E - 6970950N	Hole Typ CP	е
ocatio	n:	Kirto	n, Linc	olnshire				Level:	2.82 m AOD	Scale 1:50	
ient:		Larkf	leet Ho	omes					12-10-2018	Logged E	Зу
Vell	Water Strikes			In Situ Testing	Depth (m)	Level (m)	Legend		Stratum Descriptio	n	
	Outrics	11.50 - 11.95	U SPT	Ublow=80 UU: 203.0 UU: 226.0 UU: 246.0				Very stiff (silty calca flint.	Very high strength) brown slightly reous CLAY. Gravel is white fine t	y gravelly slightly sandy to medium chalk and	11 12 13
		14.50 - 14.95	U	Ublow=85			X				15
		16.00	SPT	N=38 (6,6/9,8,10,11)			X				16
		17.50 - 17.95	U	Ublow=90			X				18
		19.00	SPT	N=50 (9,10/50 for 145mm)			X	Flint Bould	der		19
					20.00	-5.78	<u> </u>		End of Borehole at 20.00	00m	20

	eps						Во	reho	le Log	BH04 Sheet 1 of 2	
Projec	t Name:	Midd	legate	Road, Kirton	Project UK16.	t No. 2241 B		Co-ords:	-5798E - 6971154N	Hole Type CP	
Location	on:	Kirto	n, Lince	olnshire	'			Level:	2.72 m AOD	Scale 1:50	
Client:		Larkf	fleet Ho	omes				Dates:	19-10-2018	Logged By	
Well	Water Strikes	Sampl Depth (m)		In Situ Testing In Situ Results	Depth (m)	Level (m)	Legend		Stratum Description		
		Deptil (III)	Турс	III Olla Nesalis				TOPSOIL			
					0.30	2.72	X <u>XX</u> XXX	Brown sand	dy clayey SILT		=
					0.80	2.42	XXXXX XXXXX				
					0.00	2.42	X X X X X X X X X X	Brown sand	dy SILT		1 —
		1.20	SPT	N=4 (1,1/1,1,1,1)			(=
							X				-
	_						X				
		2.00	SPT	N=5 (1,0/1,1,2,1)			$\times \times $:	2 -
							$\times \times $				=
							X X X X X				=
		3.00	SPT	N=2 (1,0/0,1,0,1)			× × × × ×				3 —
							(
							X				=
							×××××				=
		4.00	SPT	N=3 (1,1/1,0,1,1)			$\times \times $.	4 🚽
							$\times \times $				=
							× × × × × × × × × × × × × × × × ×				1
		5.00	SPT	N=9 (1,1/2,2,3,2)	4.90	1.92	XXXX XXX	Grey silty S	SAND		5
		0.00		(1,1,2,2,0,2)			× × × ×	, ,			
					5.60	-2.18	×××××				4
					5.80	-2.16	X X X 2/1/2		rown peaty SILT andy silt with occasional gravel		=
					6.10	-3.08	× × × × ×		SILT with occasional gravel and sand		6
					6.30	-3.38	××××××		rown slightly gravelly CLAY with chalk (gravel	-
					6.60	-3.58		Brown fine			=
											,
	_	7.10	SPT	N=19 (2,2/3,5,5,6)	7.10	-3.88		Stiff brown	grey gravelly CLAY. Gravel is chalk		′ ‡
											=
											=
					8.00	-4.38	×	Very stiff ve	ery dark grey slightly gravelly slightly sa	andy silty	8 🚽
							× ×		CLAY. Gravel is white fine to medium salk and rare fine to medium flint.	subangular to	=
		8.50 - 8.90	U	Ublow=74 UU: 168.0			× × ×				4
				UU: 187.0 UU: 199.0			× ×]
							<u>×</u> _×			!	9 =
							x_ <u>x</u> _x				=
							X X				=
		10.00	SPT	N=34 (4,5/8,8,9,9)			<u> </u>			1	0 -
Remar	ks	<u> </u>		l	I	I	I	<u> </u>			=

Borehole No.

										Borehole N	0.
	295						Во	reho	le Log	BH04	
					ļ				0	Sheet 2 of	
rojec	t Name:	Midd	legate l	Road, Kirton	Projec UK16.	t No. 2241 B		Co-ords:	-5798E - 6971154N	Hole Type CP	
.ocatio	on:	Kirto	n, Linco	olnshire				Level:	2.72 m AOD	Scale 1:50	
lient:		Larkf	leet Ho	mes				Dates:	19-10-2018	Logged By	/
Well	Water	Sampl	e and I	n Situ Testing	Depth	Level	Legend		Stratum Description		
//\\\	Strikes	Depth (m)	Туре	In Situ Results	(m)	(m)	∠ ^ →	Verv stiff ve		ndy silty	
		13.50 - 13.90	SPT	N=45 (6,6/10,10,11,14) Ublow=100 N=46 (7,7/11,11,12,12)	15.00	-5.28		very still ve calcareous rounded ch	ery dark grey slightly gravelly slightly sa CLAY. Gravel is white fine to medium shalk and rare fine to medium flint. End of Borehole at 15.000m	nay shity subangular to	11 12 13 14 15 16 17 18 19 19 19 19 19 19 19
											20 —
lemar	KS									AGS	
										AUS]

	eps						Во	reho	le Log	BH05 Sheet 1 of	
Projec	t Name:	Midd	legate	Road, Kirton	Project UK16.	t No. 2241 B		Co-ords:	-6117E - 6971344N	Hole Type CP	
Location	on:	Kirto	n, Lince	olnshire				Level:	2.59 m AOD	Scale 1:50	
Client:		Larkf	leet Ho	omes				Dates:	15-10-2018	Logged By	/
Well	Water			In Situ Testing	Depth	Level	Legend		Stratum Descripti	ion	
	Strikes	Depth (m)	Type	In Situ Results	(m)	(m)		TOPSOIL			- - - -
		1.20	SPT	N=4 (1,1/1,1,1,1)	0.60	2.59	XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX	Firm dark y	ellowish brown sandy slightly o	clayey SILT.	1 —
		2.20 - 2.65 2.20	D SPT	N=4 (1,1/1,1,1,1) PSD CL: 3 PSD SI: 34 PSD SA: 62 PSD GR: 0			X X X X X X X X X X X X X X X X X X X				2 —
		3.20	SPT	N=2 (1,0/1,0,1,0)			X X X X X X X X X X X X X X X X X X X				3
		4.20 - 4.45 4.20	D SPT	N=2 (1,0/1,0,1,0) PSD CL: 34 PSD SI: 51 PSD SA: 15 PSD GR: 0	4.10	1.99		Soft to firm	dark brownish grey slightly sa	ndy silty organic CLAY.	4 -
		5.20	SPT	N=4 (1,1/1,1,1,1)			216 × 316 ×				5
		5.90	SPT	N=11 (1,2/2,3,3,3)	5.70	-1.51		Firm to soft organics	t brown grey gravelly CLAY wit	th sand lenses and rare	6 —
		6.60	SPT	N=12 (1,1/2,3,3,4)	6.60	-3.11		Medium de	nse brown clayey SAND with r	rare gravel	- - - - 7 -
		7.50	SPT	N=23 (2,3/4,6,7,6)	7.20	-4.01		Stiff brown	grey gravelly CLAY. Gravel is o	chalk	- - - - - -
		9.00 - 9.45	U	Ublow=90	8.30	-4.61	X X X X X X X X X X X X X X X X X X X	slightly san	ery high strength) very dark gr dy silty calcareous CLAY. Grav bangular to rounded chalk and	vel is white fine to	8
		3.00 - 3.43	3	UU: 208.0 UU: 231.0 UU: 246.0			x x x x x x x x x x x x x x x x x x x				- - - - - -
Remar	ks										10 —

(2 0 5						Во	rehc	ole l	Log		Borehole BH0	5
oiec:	t Name:	Mido	llegate	Road, Kirton	Projec			Co-ords:	-6117	'E - 6971344	.N	Sheet 2 o	
catio				olnshire	UK16	.2241 B		Level:		m AOD		CP Scale 1:50	
ent:		Lark	fleet Ho	omes				Dates:	15-10)-2018		Logged	Ву
ell	Water	Samp	le and	In Situ Testing	Depth	Level	Legend			Stratum De	escription		
	Strikes	Depth (m)	Туре	In Situ Results	(m)	(m)		Verv stiff (Verv high		dark grey sligh	ntly gravelly	-
		10.50	SPT	N=28 (4,4/6,8,7,7)			× × × × × × × × × × × × × × × × × × ×	slightly sa	ndy silty c	alcareous CLA	Y. Gravel is w Alk and rare fi	hite fine to	11
		12.00 - 12.20	U	Ublow=90			X X X X X X X X X X X X X X X X X X X						12
		13.50	SPT	N=35 (6,6/7,9,8,11)			X X X X X X X X X X X X X X X X X X X						13
		15.00 - 15.45	U	Ublow=95			x x x x x x x x x x x x x x x x x x x						15
		16.50	SPT	N=37 (6,7/7,10,9,11)			X X X X X X X X X X X X X X X X X X X						16
		18.00	U	Ublow=95 UU: 238.0 UU: 250.0 UU: 261.0			X						18

Remarks

19.55

SPT

N=43 (6,7/10,10,11,12)

20.00

-5.71

End of Borehole at 20.000m

20 -

	eps						Во	reho	le Log	Borehole No. BH06 Sheet 1 of 2
Projec	t Name:	Midd	legate	Road, Kirton	Project UK16.	t No. 2241 B		Co-ords:	-6043E - 6971134N	Hole Type CP
Location	on:	Kirto	n, Linco	olnshire				Level:	2.76 m AOD	Scale 1:50
Client:		Larkf	leet Ho	omes				Dates:	16-10-2018	Logged By
Well	Water Strikes	I		In Situ Testing	Depth (m)	Level (m)	Legend		Stratum Description	
		Depth (m)	Туре	In Situ Results	(111)	()		TOPSOIL		
					0.40	2.76	××××××	Firm to stiff	f brown friable SILT/CLAY (Possib	ly reworked)
		1.20 - 1.65	U	Ublow=40	1.00	2.36	X	Firm browr staining, ar	sandy clayey SILT with rare greynd ferruginous sandstone.	mottling, orange
		2.20	SPT	N=3 (1,1/1,1,1,0)			X			2 -
		3.20	SPT	N=2 (1,0/1,0,1,0)			××××× ××××× ×××××× ×××××××××××××××××××			3 -
		3.20	3F I	N-2 (1,0/1,0,1,0)	3.50	1.76	X	Soft grey S	ILT	4 -
		4.20	SPT	N=2 (1,0/1,0,1,0)			××××× ××××× ××××× ××××× ××××××			
		5.00	SPT	N=6 (1,1/1,1,2,2)	4.90	-0.74	YÂYÂY A	Loose to m	edium dense fine grey SAND	5 -
		6.20	SPT	N=14 (1,2/2,3,4,5)	5.90	-2.14		Firm to soft lenses	t grey brown sandy CLAY with rare	e gravel and sand 6 -
					6.50	-3.14		Stiff to firm	grey brown gravelly CLAY. Grave	l is chalk
		7.70 - 8.00	U	Ublow=60						
		8.00	SPT	N=12 (1,1/2,2,4,4)	8.00	-3.74		Medium de	ense brown SAND with rare fine gr	avel 8 -
		9.00	SPT	N=25 (2,3/5,7,6,7)	8.75	-5.24		Stiff to firm	grey brown gravelly CLAY. Grave	l is chalk
					9.75	-5.99	××	Very stiff (\	/ery high strength) dark grey sligh	tly gravelly slightly
Remar	ks									

(eps						Во	reho	le Log	Borehole N	
rojec	t Name:	Midd	legate	Road, Kirton	Projec	t No. 2241 B		Co-ords:	-6043E - 6971134N	Sheet 2 of Hole Type CP	
ocati	on:	Kirto	n, Linc	olnshire	OKTO.	2241 6		Level:	2.76 m AOD	Scale 1:50	
lient:		Larki	fleet Ho	omes				Dates:	16-10-2018	Logged B	у
Vell	Water Strikes	Sample Depth (m)		In Situ Testing In Situ Results	Depth (m)	Level (m)	Legend		Stratum Description		
		10.50 - 10.95	U	Ublow=85 PI: 23 MC: 14.7			X	sandy silty mottling. Go chalk, light	fery high strength) dark grey slightly calcareous CLAY with occasional of ravel is white fine to coarse subang grey fine to coarse subangular to s and white and grey flint.	lark greyish brown Jular to rounded	11
		12.00	SPT	N=30 (5,4/5,7,8,10)			X				12
		13.50 - 13.95	U	Ublow=95 PI: 24 MC: 13.6 UU: 287.0 UU: 306.0 UU: 320.0	15.00	-6.99	X		End of Borehole at 15.000m		14
											16
											17
											19

Remarks

20 —

APPENDIX C

Geological Cross Sections

Project Id: UK16.2241 B Project Title: Middlegate Road, Kirton

Location: Kirton, Lincolnshire
Client: Larkfleet Homes

Title: Site Plan
Scale: 1:4000
Engineer: Sam Setchell

Legend Key

Sections - Section line 1

Sections - Section line 2

Locations By Type - CP

Project No: UK16.2241 B Title: Middlegate Road, Kirton Scale Location: Kirton, Lincolnshire Vertical: 1:156 Client: Larkfleet Homes Engineer: Sam Setchell Horizontal: Not to scale N=3 N=4 N=4 N=2 N=2 Legend Key N=3 N=2 N=9 N=2 SILT/CLAY 6.05 N=10 6.25 N=12 Sandy SILT Sity organic CLAY Sity SAND N=34 Peaty SILT Gravelly CLAY Peaty SILT/ CLAY Sandy CLAY -12 SAND Clayey SAND Sity CLAY -18.00

2.72

Chainage (m) Offset (m)

Elevation (mAOD)

Project No: UK16.2241 B Title: Middlegate Road, Kirton Scale Location: Kirton, Lincolnshire Vertical: 1:156 Client: Larkfleet Homes Engineer: Sam Setchell Horizontal: Not to scale N=2 N=2 N=3 Legend Key Clay/Silt SILT/CLAY 8.60 Sandy SILT N=29 Sity SAND Peaty SILT Sandy organic CLAY Gravelly CLAY -12 · Sity CLAY SAND Clayey silty gravelly SAND N=50 (9,10/50 for 145mm) -18.00 Chainage (m) Offset (m) Elevation (mAOD)

APPENDIX D

Laboratory Results-Geotechnical

ISSUED BY SOIL PROPERTY TESTING LTD **DATE ISSUED: 06/11/2018**

Contract	UK16.2241B - Middleg	gate Road, Kirton
Serial No.	S33960	
Ltd Unit 7 Caxton I Broad S Great Cambrid CB23 6J Samples Submitt Enviror Ltd Samples Labelled	treet ambourne dge N ed By: nmental Protection Strate	15, 16, 18 Halcyon Court, St Margaret's Way, Stukeley Meadows, Huntingdon, Cambridgeshire, PE29 6DG Tel: 01480 455579 Email: enquiries@soilpropertytesting.com Website: www.soilpropertytesting.com Website: www.soilpropertytesting.com Approved Signatories: J.C. Garner B.Eng (Hons) FGS Technical Director S.P. Townend FGS Quality Manager
Date Received:	23/10/2018 S	Samples Tested Between: 23/10/2018 and 06/11/2018
	attention of Mr S Setche eference No: UK16.2241B	
Notes:	unless we are notified to the	emnants from this contract will be disposed of after 21 days from today, the contrary. om Accreditation Service retations expressed herein are outside the scope of UKAS accreditation
3	Schedule for this testing lal	ACCREDITED" in this test report are not included in the UKAS Accreditation boratory. e reproduced other than in full except with the prior written approval of the

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 06/11/2018

0998

Contra	act		UK16.2	241	В-	Mi	ddl	ega	ite I	Roa	ıd,	Kirt	on												
Serial	No.		S33960)														Т	arg	et D	ate		05/1	L/2018	
Sched	uled	Ву	Enviror	ıme	nta	l Pr	ote	ctio	on S	Stra	teg	ies	Ltd									•			
									SC	HEI	DU	LE (OF	LAI	ВОІ	RA ⁻	TOF	RY .	TES	TS					
Sched	ule R	emarks																							
Bore Hole No.	Туре	Sample Ref.	Top Depth	/ ক	9 pg	SO of	Mater States	Signal L	Holing Children	A Lights Citation	Data in Control of the Control of th	nensic contraction of the second	nal Co	nsolidz	ition								Sample	Remarks	s
BH01	В	3	3.20	1																					
BH01	D	5	6.10			1	1	1															 		
BH01	В	4	6.70			1	1	1																	
BH01	U	1	9.20						1																
BH01	U	3	15.20						1																
BH01	U	4	18.20						1																
BH02	В	6	7.90			1	1	1																	
BH02	U	1	10.10						1																
BH02	U	2	13.10						1																
BH03	D	5	5.00	1																					
BH03	D	9	6.75			1	1	1																	
BH03	В	7	7.40		1																				
BH03	U	1	8.50						1																
BH03	U	2	11.50						1																
BH04	U	2	8.50						1																
BH05	D	2	2.20	1																					
BH05	D	5	4.20	1																					
BH05	U	1	9.00						1																
BH05	U	4	18.00						1																
вн06	U	1	1.20							1															
ВН06	U	3	10.50			1	1	1																	
BH06	U	4	13.50				1	1	1																
		Totals	•	4	1	5	6	6	11	1													End of	Schedule	

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 06/11/2018

0998

Contract	UK16.2241B - Middlegate Road, Kirton
Serial No.	S33960

SUMMARY OF WATER CONTENT, LIQUID LIMIT, PLASTIC LIMIT, PLASTICITY INDEX AND LIQUIDITY INDEX

	1					-	Dia -+*	Litar del	-					
Borehole	Donth	T	Ref.	Water	Liquid	Plastic	Plasti-	Liquid-	SA	MPLE PRE				
/Pit No.	Depth	Type	кет.	Content	Limit	Limit	city Index	ity Index	Method	Ret'd 0.425mm	Corr'd W/C	Curing Time	Description	CLASS
/PIL NO.	(m)			(%)	(%)	(%)	(%)	(%)		(%)	<0.425mm	(hrs)		
BH01	6.10 - 6.20	D	5	57.1	51	35	16	1.38	Wet Sieved	11 (M)	64.1*	24	Very soft dark grey slightly gravelly slightly sandy slightly peaty organic CLAY. Gravel is fine to medium black flint.	МНО
вн01	6.70 - 8.20	В	4	14.1	18	9	9	0.57	Wet Sieved	32 (M)	20.7*	30	Very soft light olive brown slightly gravelly sandy silty slightly organic CLAY with occasional grey mottling. Gravel is brown, black and white fine to coarse angular to subrounded flint.	CLO
вно2	7.90 - 8.40	В	6	18.9	39	16	23	0.12	Wet Sieved	6 (M)	20.1*	24	Firm olive slightly gravelly slightly sandy silty CLAY with occasional dark grey mottling, and orange staining. Gravel is fine to coarse chalk and flint.	CI
вноз	6.75 - 7.20	D	9	16.4	27	12	15	0.29	Wet Sieved	29 (M)	23.1*	24	Soft light olive brown slightly gravelly slightly sandy silty CLAY with rare bluish grey mottling. Gravel is fine to medium chalk and flint.	CL
вно6	10.50	U	3	14.7	40	17	23	-0.10	Wet Sieved	30 (M)	21.0*	24	Very stiff dark grey slightly gravelly slightly sandy silty CLAY. Gravel is fine to coarse chalk and flint.	CI
вно6	13.50	U	4	13.6	42	18	24	-0.18	Wet Sieved	11 (M)	15.3*	24	Very stiff (Very high strength) dark grey slightly gravelly slightly sandy silty calcareous CLAY with occasional dark greyish brown mottling. Gravel is white fine to coarse subangular to rounded chalk, light grey fine to coarse subangular to subrounded mudstone, and white and grey flint.	CI

Method Of Preparation: Method of Test:

BS EN ISO: 17892-1: 2014 & BS 1377: Part 2:1990:4.2

Type of Sample Key: Comments: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2:1990:3.2, 4.4, 5.3, 5.4

U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

*Corrected water content assume material greater than 0.425mm is non-porous. See BS1377: Part 2: 1990 Clause 3 Note 1.

Remarks to Include:

Sample disturbance, loss of water, variation from test procedure, location and origin of test specimen within original sample, oven drying temperature if not 105-110C

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 06/11/2018

0998

Contract	UK16.2241B - Middlegate Road, Kirton
----------	--------------------------------------

Serial No. S33960

PLOT OF PLASTICITY INDEX AGAINST LIQUID LIMIT USING CASAGRANDE CLASSIFICATION CHART

		Plasticit	у	
Low	Medium	High	Very High	Extremely High

Plasticity Chart BS5930: 2015: Figure 8

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS1377: Part 2: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments: Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 06/11/2018

0998

Contract		UK16.	.2241B - M	iddlegate	، Road <u>د</u>	Kirton										_
Serial No.		S3396	i0													_
		DET	TERMINATI DEF	ION OF W		-	-					/IIT AN	D			_
Borehole / Pit No.	Depth m		Sample Reference	Water Content		• • • •		scription					Re	emark	(S	_
RHO1	6.10 - 6.20		5	57.1		dark grey sligh vel is fine to m			andy sligl	ntly peaty	organic	Material the A-Lin 50°C due	ne Spec	cimen o	ven drie	d a
			P	REPARATIO	ON				Liq	uid Limi	it				51	%
Method of	prepa	aratior	1		Wet	sieved ove	er 0.47	25mm sie	ve Pla	stic Lim	ıit				35	%
Sample reta	ained	0.425	mm sieve	(Meası	ured)			11 %	Pla	sticity I	ndex				16	%
Corrected v	water	conte	ent for mate	rial passin	g 0.425n	nm	Not r	eported	Liq	uidity Ir	ndex				1.38	-
Sample reta	ained.	2mm	sieve	(Meası	ured)			7 %	NH	IBC Mod	dified ((I'p)			14	9
Curing time			24	hrs	Clay	Content	Not a	inalysed	De	rived Ac	ctivity			Not an	nalysed	-
C=CLAY Plasticity In % (Ip)	ndex	30 -		CL	CI	CH		CV		CE				Low Medium High	NHBC Volume Change Potential	
M=SILT		0 0	10 2	ML 20 30	MI 40	MF 50 60			90	ME 100 art BS5930	110 D: 2015: F	120 Figure 8	Lie	quid L	Limit %	6

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 06/11/2018

0998

Contract	UK16.	.2241B - M	iddlegate	Road, K	irton										
Serial No.	S3396	0													
	DET	TERMINATI DER	ON OF W		•	-					MIT	ANI)		
Borehole / Pit No. Dept m		Sample Reference	Water Content (W) %				scription			<u>-</u>			Re	emark	(S
BH01 6.70 8.20	- _B	4	14.1	CLAY with o		ey mottli	ly gravelly sai ing. Gravel is nded flint.								
<u>'</u>		Pi	REPARATIO	ON				Liq	uid Lim	it					18 %
Method of prep	aration	1		Wet s	ieved ove	er 0.42	25mm siev	ve Pla	stic Lim	iit					9 %
Sample retained	0.425	mm sieve	(Measu	ured)			32 %	Pla	sticity I	ndex					9 %
Corrected water	r conte	nt for mate	rial passing	g 0.425m	m		20.7 %	Liq	uidity Ir	ndex					0.57
Sample retained	d 2mm	sieve	(Measu	ured)			20 %	NH	BC Mod	dified	(l'p)			6 %
Curing time		30	hrs	Clay C	Content	Not a	nalysed	Der	rived Ad	ctivity	,			Not ar	nalysed
C=CLAY Plasticity Index % (Ip)	30 20		CL	CI	CH		CV		CE					Low Medium High	NHBC Volume Change Potential
M=SILT	0 0	10 2	ML 20 30	MI 40	MH 50 60			90	ME 100 art BS5930	110		120	Lie	quid l	_imit %

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 06/11/2018

0998

Contract		UK16.	2241B - M	iddlegate	Road, Ki	rton						
Serial No.		S3396	0									
		DET				-	-		ND PLASTIC LIMI	T AND)	
Borehole / Pit No.	Depth m		Sample Reference	Water Content (W) %				scription			Remar	« S
RHO2 I	7.90 - 8.40		6	18.9	_				AY with occasional dark to coarse chalk and			
			PI	REPARATION	ON				Liquid Limit			39 %
Method of p	orepa	aration	l		Wet sie	eved ove	r 0.42	5mm sieve	Plastic Limit			16 %
Sample reta	ined	0.425	mm sieve	(Meası	ıred)			6 %	Plasticity Index			23 %
Corrected w	vater	conte	nt for mate	rial passing	g 0.425mm	1		20.1 %	Liquidity Index			0.13
Sample reta	ined	2mm	sieve	(Meası	ured)			4 %	NHBC Modified (I	'p)		22 %
Curing time			24	hrs	Clay Co	ntent	Not ar	nalysed	Derived Activity		Not a	nalysed
C=CLAY Plasticity In % (Ip)	dex	70 60 50 40 30		CL	CI	СН		CV	CE		/ Medium High	NHBC Volume Change Potential
M=SILT		10 0	10 2	ML 0 30	MI 40 50	MH 0 60	70		ME 90 100 110 ty Chart BS5930: 2015: Fig	120 gure 8	Liquid	Limit %

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 06/11/2018

0998

Contract		UK16.	2241 B - M	iddlegate	Road, Kir	rton										
Serial No.		S3396	0													
		DET	ERMINATI		ATER CON	-						IIT AN	D			
Borehole / Pit No.	Depth m		Sample Reference	Water Content (W) %		10.1.1.1.		cription	(- 1-1-1				Re	emark	(S	
RHO3	6.75 - 7.20	D	9	16.4	_	oft light olive brown slightly gravelly slightly sandy silty CLAY with rare sluish grey mottling. Gravel is fine to medium chalk and flint.										
PREPARATION Liquid Limit									27	%						
Method of	prepa	ration			Wet sie	ved ove	r 0.42	5mm sie	ve Plas	tic Lim	it				12	%
Sample reta	ained	0.425	mm sieve	(Meası	ıred)			29 %	Plas	ticity lı	ndex				15	%
Corrected water content for material passing 0.425mm 23.1 % Liquidity Index								0.29								
Sample retained 2mm sieve (Measured) 8 % NHBC Modified (I'p)							l'p)			11	%					
Curing time	9		24	hrs	Clay Co	ntent	Not an	nalysed	Deri	ived Ac	tivity			Not ar	nalysed	
C=CLAY Plasticity Ir % (Ip)	ndex	70 60 50 40		CL	CI	СН		CV		CE				Medium High	NHBC Volume Change Potential	
M=SILT		10 0	10 2	ML 0 30	MI 40 50	MH 0 60	70	MV 80	90	ME 100	110	120	Lie	%OJ	.imit 9	<u> </u> *

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 06/11/2018

0998

Contract		UK16.	.2241B - M	iddlegate	Road, Ki	rton							
Serial No.		S3396	50										
		DET				-			AND PLASTIC LIMIT	AND)		
Borehole / Pit No.	epth m		Sample Reference	Water Content (W) %		Description						S	
BH06 1	0.50	U	3	14.7		ery stiff dark grey slightly gravelly slightly sandy silty CLAY. Gravel is ne to coarse chalk and flint.							
PREPARATION Liquid Limit										40 %			
Method of p	repa	aration	1		Wet sie	eved ove	er 0.42	25mm siev	Plastic Limit			17 %	
Sample retai	ined	0.425	mm sieve	(Meası	ured)			30 %	Plasticity Index			23 %	
Corrected wa	ater	conte	nt for mate	rial passing	g 0.425mn	n		21.0 %	Liquidity Index		-0.10		
Sample retai	ined	2mm	sieve	(Meası	ured)			7 %	NHBC Modified (I'p)		16 %	
Curing time			24	hrs	Clay Co	ontent	Not a	nalysed	Derived Activity		Not an	alysed	
C=CLAY Plasticity Inc % (Ip)	dex	70 60 50 40		CL	CI	СН		CV	CE		Medium High	NHBC Volume Change Potential	
MA CUT		20			×						Low	NHBG	
M=SILT 0 0 10				ML 20 30	MI 40 5	MH 0 60			ME 90 100 110 city Chart BS5930: 2015: Figu	120 re 8	Liquid L	imit %	

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 06/11/2018

0998

Contract		UK16.	.2241B - M	iddlegate	Road, Ki	irton										
Serial No.		S3396	0													
		DET	ERMINATI DEF	ON OF W		-						IT ANI	D			
Borehole / Pit No.	Depth m		Sample Reference	Water Content (W) %				scription		· · ·			Re	mark	:S	
BH06 1	13.50		4	13.6	silty calcared Gravel is whi	Very stiff (Very high strength) dark grey slightly gravelly slightly sandy silty calcareous CLAY with occasional dark greyish brown mottling. Gravel is white fine to coarse subangular to rounded chalk, light grey fine to coarse subangular to subrounded mudstone, and white and										
	PREPARATION Liquid Limit 42 %															
Method of preparation Wet sieved over 0.425mm sieve Plastic Limit 18 %																
Sample reta	ained	0.425	mm sieve	(Measu	ıred)			11 %	Pla	sticity lı	ndex				24	%
Corrected w	vater	conte	nt for mate	rial passinę	 g 0.425mr	n		15.3 %	Lic	juidity Ir	ndex				-0.18	
Sample reta	ained	2mm	sieve	(Measu	ured)			8 %	NI	IBC Mod	lified (I	'p)			21	%
Curing time)		24	hrs	Clay C	ontent	Not a	nalysed	De	rived Ac	tivity			Not an	nalysed	
C=CLAY Plasticity In % (Ip)	ndex	70 60 50 40		CL	CI	СН		CV		CE				Medium High	Volume Change Potential	
		20			×									Low	NHBC Volu	
M=SILT 10						Lic	լuid L	Limit S	l %							
								Plas	ticity Ch	art BS5930	: 2015: Fi	gure 8				

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 06/11/2018

าดดด

Contract	UK16.2241B - Middlegate Road, Kirton
Serial No.	S33960

DETERMINATION OF PARTICLE SIZE DISTRIBUTION Borehole / Depth Sample Description Remarks Pit No. Reference (m) Type 3.20 -BH01 В 3 Brown sandy slightly clayey SILT. 3.70

Method of Test: Hydrometer + Pre-sieve Method of Pretreatment: Not required

CLAV	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	CORRIES	DOLU DEDC
CLAY		SILT			SAND			GRAVEL		CORRIES	BOULDERS

Н	Particle Size (mm)	Passing (%)	Silt by Dry Mass (%)
y d	0.0432	20	
r	0.0348	12	37
О	0.0259	9	
m	0.0186	7	Clay by
e	0.0098	6	Dry Mass
t e	0.0069	6	(%)
r	0.0049	5	
	0.0033	4	4
	0.0016	4	

Sieve Size (mm)	Passing (%)	Sand By Dry Mass (%)
2.00	100	
1.18	100	
0.600	100	
0.425	100	59
0.300	100	39
0.212	100	
0.150	100	
0.063	41	

Fines By Dry Mas	ss (%)
<0.063mm	41

Sieve Size (mm)	Passing (%)	Gravel By Dry Mass (%)
150		
125		
90		
63		
50		
37.5		0
28		U
20		
14		
10		
6.3		
5	100	

Method of Preparation: BS1377: Part 1: 2016: 8.3 & 8.4.5 Method of test: BS1377: Part2: 1990: 9.2, 9.5

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Method of Test:

TEST REPORT

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 06/11/2018

		0550
Contract	UK16.2241B - Middlegate Road, Kirton	
Serial No.	S33960	

DETERMINATION OF PARTICLE SIZE DISTRIBUTION Borehole / Depth Sample Description Remarks Pit No. Reference (m) Type 5.00 -**BH03** 5 D Brown silty slightly clayey SAND. 5.45

Hydrometer + Pre-sieve Method of Pretreatment: Not required 100

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	CODDIEC	DOLU DEDC
CLAY		SILT			SAND			GRAVEL		COBBLES	BOULDERS

Н	Particle Size (mm)	Passing (%)	Silt by Dry Mass (%)
y d	0.0524	7	
r	0.0380	5	16
О	0.0272	5	
m	0.0193	4	Clay by
e	0.0100	4	Dry Mass
t e	0.0071	3	(%)
r	0.0051	3	
	0.0033	3	2
	0.0016	2	

Sieve Size (mm)	Passing (%)	Sand By Dry Mass (%)
2.00	100	
1.18	100	
0.600	100	
0.425	100	82
0.300	99	02
0.212	98	
0.150	95	
0.063	18	

Fines By Dry Mass (%)						
<0.063mm	18					

Sieve Size (mm)	Passing (%)	Gravel By Dry Mass (%)
150		
125		
90		
63		
50		
37.5		0
28		J
20		
14		
10		
6.3		
5	100	

Method of Preparation: BS1377: Part 1: 2016: 8.3 & 8.4.5 Method of test: BS1377: Part2: 1990: 9.2, 9.5

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 06/11/2018

าดดด

Contract	UK16.2241B - Middlegate Road, Kirton
Serial No.	S33960

DETERMINATION OF PARTICLE SIZE DISTRIBUTION Borehole / Depth Sample Description Remarks Pit No. Reference (m) Type 7.40 -Brown gravelly silty clayey SAND. Gravel is brown, black and white angular **BH03** В 7 to subangular flint and occasional white and brown subrounded quartzite. 7.90

Method of Test: Wet Sieve + Hydrometer | Method of Pretreatment: Not required

CLAV	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	CODDIEC	DOLU DEDC
CLAY		SILT			SAND			GRAVEL		COBBLES	BOULDERS

Н	Particle Size (mm)	Passing (%)	Silt by Dry Mass (%)
y d	0.0488	10	
r	0.0349	9	5
О	0.0247	9	
m	0.0176	9	Clay by
e	0.0092	8	Dry Mass
t e	0.0066	8	(%)
r	0.0047	7	
	0.0031	7	6

Sieve Size (mm)	Passing (%)	Sand By Dry Mass (%)
2.00	90	
1.18	90	
0.600	88	
0.425	83	79
0.300	68	79
0.212	46	
0.150	31	
0.063	11	

Fines By Dry Mass (%)						
<0.063mm	11					

Sieve Size (mm)	Passing (%)	Gravel By Dry Mass (%)
150		
125		
90		
63		
50		
37.5		10
28	100	10
20	98	
14	94	
10	93	
6.3	92	
5	91	

Method of Preparation: BS1377: Part 1: 2016: 8.3 & 8.4.5 Method of test: BS1377: Part2: 1990: 9.2, 9.5

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 06/11/2018

naag

Contract	UK16.2241B - Middlegate Road, Kirton
Serial No.	S33960

DETERMINATION OF PARTICLE SIZE DISTRIBUTION Borehole / Depth Sample Description Remarks Pit No. Reference (m) Type 2.20 -BH05 2 D Dark yellowish brown sandy slightly clayey SILT. 2.65

Method of Test: Hydrometer + Pre-sieve Method of Pretreatment: Not required

CLAV	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	CODDIEC	DOLU DEDC
CLAY		SILT			SAND			GRAVEL		COBBLES	BOULDERS

Н	Particle Size (mm)	Passing (%)	Silt by Dry Mass (%)
y d	0.0446	19	
r	0.0353	12	35
О	0.0260	9	
m	0.0187	7	Clay by
e	0.0098	6	Dry Mass
t e	0.0070	5	(%)
r	0.0050	5	
	0.0033	4	3
	0.0016	3	

Sieve Size (mm)	Passing (%)	Sand By Dry Mass (%)
2.00	100	
1.18	100	
0.600	100	
0.425	100	62
0.300	100	02
0.212	100	
0.150	99	
0.063	38	

Fines By Dry Mas	ss (%)
<0.063mm	38

Sieve Size (mm)	Passing (%)	Gravel By Dry Mass (%)
150		
125		
90		
63		
50		
37.5		0
28		J
20		
14		
10		
6.3		
5	100	

 Method of Preparation:
 BS1377: Part 1: 2016: 8.3 & 8.4.5

 Method of test:
 BS1377: Part 2: 1990: 9.2, 9.5

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 06/11/2018

าดดด

Contract	UK16.2241B - Middlegate Road, Kirton
Serial No.	S33960

DETERMINATION OF PARTICLE SIZE DISTRIBUTION Depth Sample Borehole / Description Remarks Pit No. Reference (m) Type 4.20 -BH05 D 5 Soft dark brownish grey slightly sandy silty organic CLAY. 4.45

Method of Test: Hydrometer + Pre-sieve Method of Pretreatment: Tested from natural - pretreatment for organics not carried out

CLAV	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	CODDIEC	DOLU DEDC
CLAY		SILT			SAND			GRAVEL		COBBLES	BOULDERS

Н	Particle Size (mm)	Passing (%)	Silt by Dry Mass (%)
y d	0.0491	81	
r	0.0351	77	51
О	0.0249	75	
m	0.0178	71	Clay by
e	0.0094	60	Dry Mass
t e	0.0067	52	(%)
r	0.0048	48	
	0.0032	40	34
	0.0016	32	

Sieve Size (mm)	Passing (%)	Sand By Dry Mass (%)
2.00	100	
1.18	100	
0.600	100	
0.425	99	15
0.300	97	15
0.212	96	
0.150	94	
0.063	85	

Fines By Dry Mass (%)							
<0.063mm	85						

Sieve Size (mm)	Passing (%)	Gravel By Dry Mass (%)
150		
125		
90		
63		
50		
37.5		0
28		U
20		
14		
10		
6.3		
5		

Method of Preparation: BS1377: Part 1: 2016: 8.3 & 8.4.5
Method of test: BS1377: Part2: 1990: 9.2, 9.5

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 06/11/2018

Contract	UK16.2241B - Middlegate Road, Kirton
----------	--------------------------------------

Serial No. S33960

DETERMINATION OF DENSITY, WATER CONTENT AND UNDRAINED SHEAR STRENGTH IN TRIAXIAL **COMPRESSION WITHOUT MEASURMENT OF PORE PRESSURE**

			CON	/IF KL33	IOIN VV	111100	I WIEAS	OKIVILIN	II OF F	ONE Ph	ESSUR	
Borehole	Depth			Water	Bulk	Dry	Lateral	Deviator	Shear	Mohrs		
/Pit No.	·	Туре	Reference	Content	Density	Density	Pressure	Stress	Stress	Ana		Description
,	(m)			(%)	(Mg/m³)	(Mg/m³)	(kPa)	(kPa)	(kPa)	Cu (kPa)	Ø degrees	
BH01	9.20	U	1	16.4	2.18	1.87	187 373	468 489	234 245	209	3.3	Very stiff (Very high strength) dark grey slightly gravelly slightly sandy silty calcareous CLAY with occasional dark greyish brown mottling. Gravel is white fine to coarse subangular to rounded
							558	514	257			chalk.
							308	511	256			Very stiff (Very high strength) dark grey slightly gravelly slightly sandy silty
BH01	15.20	U	3	16.1	2.22	1.91	607	538	269	236	2.0	calcareous CLAY with occasional dark greyish brown mottling. Gravel is white fine to coarse subangular to rounded
							804	548	274			chalk and rare fine to coarse flint.
							367	664	332			Hard (Eztremely high strength) dark grey slightly gravelly slightly sandy silty
BH01	18.20	U	4	14.4	2.21	1.93	604	692	346	302	2.5	calcareous CLAY with occasional dark greyish brown mottling. Gravel is white fine to coarse subangular to rounded
							806	704	352			chalk and rare flint.
							200	428	214			Very stiff (Very high strength) dark grey slightly gravelly slightly sandy silty calcareous CLAY with occasional dark
BH02	10.10	U	1	15.6	2.17	1.88	404	457	229	187	3.8	greyish brown mottling, and rare decayed roots. Gravel is white fine to
							598	483	242			coarse subangular to rounded chalk and light grey mudstone.
							265	460	230			Very stiff (Very high strength) dark grey slightly gravelly slightly sandy silty
BH02	13.10	U	2	14.9	2.17	1.89	531	523	262	188	5.0	calcareous CLAY. Gravel is white fine to coarse subangular to rounded chalk and
							794	562	281			rare fine to medium flint.
							170	222	111			Stiff (High strength) very dark grey slightly gravelly slightly sandy silty
вн03	8.50	U	1	17.6	2.17	1.85	340	264	132	87	5.2	calcareous CLAY. Gravel is white fine to medium subangular to rounded chalk
							513	290	145			and rare fine to coarse flint.
							232	406	203			Very stiff (Very high strength) brown
BH03	11.50	U	2	16.3	2.16	1.86	459	451	226	166	4.9	slightly gravelly slightly sandy silty calcareous CLAY. Gravel is white fine to medium chalk and flint.
							692	491	246			

Method of Preparation:

BS 1377: Part 1: 1990: 7.4.2 & 8, Part 2: 1990: 7.2, Part 7: 1990: 8.3

Method of Test:

BS 1377: Part 2: 1990:3 Determination of Moisture Content, Part2: 1990:7 Determination of Density, Part 7: 1990: 8 Undrained Shear

Strenth, 9 Multistage Loading

Type of Sample Key:

U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments: Remarks to Include:

Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample, oven drying temperature if not 105-110°C

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 06/11/2018

Contract	UK16.2241B - Middlegate Road, Kirton
----------	--------------------------------------

Serial No. \$33960

DETERMINATION OF DENSITY, WATER CONTENT AND UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASURMENT OF PORE PRESSURE

BH04 8.50 U 2 15.8 2.23 1.93 344 374 187 140 4.8 slightly gravelly slightly sandy silty calcareous CLAY. Gravel is white fine medium subangular to rounded chal grey slightly gravelly slightly sandy silty sandy s			ESSUR	<u> </u>									
Pit No.	Borehole	Depth											
BH04		(m)	Туре	Reference									· ·
BH04 8.50 U 2 15.8 2.23 1.93 344 374 187 140 4.8 Calcareous CLAY. Gravel is white fine medium subangular to rounded chall								173	336	168			Very stiff (Very high strength) dark grey
BH05 9.00 U 1 1 16.8 2.21 1.89 364 462 231 172 5.4 Very stiff (Very high strength) very digrey slightly gravelly slightly sandy sidual calcareous CLAY. Gravel is white fine medium subangular to rounded chall and rare fine to medium subangular to rounded chall and rare fine to medium subangular to rounded chall and rare fine to medium subangular to rounded chall show that the medium subangular to rounded chall show the fine medium subangular to rounded chall show the fine medium subangular to rounded chall slightly sandy side calcareous CLAY. Gravel is white fine medium subangular to rounded chall slightly gravelly slightly sandy silty calcareous CLAY with occasional dark greysh brown mottling. Gravel is white fine to coarse subangular to rounded chalk, light grey fine to coarse subangular to rounded chalk, light grey fine to coarse subangular to subrounded mudston.	BH04	8.50	U	2	15.8	2.23	1.93				140	4.8	calcareous CLAY. Gravel is white fine to medium subangular to rounded chalk.
BHO5 9.00 U 1 16.8 2.21 1.89 364 462 231 172 5.4 grey slightly gravelly slightly sandy signed in the substangular to rounded chall and rare fine to medium flint. BHO5 18.00 U 4 15.4 2.16 1.87 597 499 250 208 2.8 grey slightly gravelly slightly sandy signed in the substangular to rounded chall and rare fine to medium flint. BHO6 13.50 U 4 13.6 2.18 1.92 541 612 306 255 3.3 grey slightly gravelly slightly sandy signed in the substangular to rounded chall slightly gravelly slightly sandy signed in the substangular to rounded chall slightly gravelly slightly sandy signed in the substangular to rounded chall slightly gravelly slightly sandy signed in the substangular to rounded chall slightly gravelly slightly sandy signed in the substangular to rounded chall slightly gravelly slightly sandy signed in the substangular to rounded chall slightly gravelly slightly sandy signed in the substangular to rounded chall slightly gravelly slightly sandy signed in the substangular to rounded chall slightly gravelly slightly sandy signed in the substangular to rounded chall slightly gravelly slightly sandy signed in the substangular to rounded chall slightly gravelly slightly sandy signed in the substangular to rounded chall slightly gravelly slightly sandy signed in the substangular to rounded chall slightly gravelly slightly sandy signed in the substangular to rounded chall slightly gravelly slightly sandy signed in the substangular to rounded chall slightly gravelly slightly sandy signed in the substangular to rounded chall slightly gravelly slightly sandy signed in the substangular to substangular to rounded chall slightly gravelly slightly sandy signed in the substangular to substangular to rounded chall slightly gravelly slightly sandy signed in the substangular to subs								512	398	199			
BH05 18.00 U 4 15.4 2.16 1.87 597 499 250 208 2.8 Very stiff (Very high strength) very d grey slightly gravelly slightly sandy sical careous CLAY. Gravel is white fine medium subangular to rounded chalmed by the subangular to subrounded mudstoned by the subangular to subrounded by the subangular to subrounded mudstoned by the subangular to subrounded by the subangular to subrounded by the subangular to subrounded mudstoned by the subangular to subrounded by the subangular to subangular to subrounded by the subangular t									416				Very stiff (Very high strength) very dark grey slightly gravelly slightly sandy silty
BH05 18.00 U 4 15.4 2.16 1.87 597 499 250 208 2.8 Very stiff (Very high strength) very d grey slightly gravelly slightly sandy si calcareous CLAY. Gravel is white fine medium subangular to rounded chall slightly gravelly slightly sandy silty calcareous CLAY with occasional dar greyish brown mottling. Gravel is white fine medium subangular to rounded chall slightly gravelly slightly sandy silty calcareous CLAY with occasional dar greyish brown mottling. Gravel is white fine to coarse subangular to rounded chall, light grey fine to coarse subangular to subrounded mudston.	BH05	9.00	U	1	16.8	2.21	1.89				172	5.4	calcareous CLAY. Gravel is white fine to medium subangular to rounded chalk
BH05 18.00 U 4 15.4 2.16 1.87 597 499 250 208 2.8 Very stiff (Very high strength) very d grey slightly gravelly slightly sandy si calcareous CLAY. Gravel is white fine medium subangular to rounded chall be slightly gravelly slightly sandy silty calcareous CLAY with occasional dark g slightly gravelly slightly sandy silty calcareous CLAY with occasional dark greyish brown mottling. Gravel is which fine to coarse subangular to rounded chall, light grey fine to coarse subangular to subrounded mudston.								544	492	246			and rare fine to medium fiint.
BHOS 18.00 U 4 15.4 2.16 1.87 597 499 250 208 2.8 calcareous CLAY. Gravel is white fine medium subangular to rounded chall 801 521 261 272 574 287 BHO6 13.50 U 4 13.6 2.18 1.92 541 612 306 255 3.3 Sightly gravelly slightly sandy silty calcareous CLAY with occasional dar greyish brown mottling. Gravel is white fine to coarse subangular to rounded chalk, light grey fine to coarse subangular to subrounded mudston.								361	475	238			Very stiff (Very high strength) very dark
BH06 13.50 U 4 13.6 2.18 1.92 541 612 306 255 3.3 Very stiff (Very high strength) dark g slightly gravelly slightly sandy silty calcareous CLAY with occasional dar greyish brown mottling. Gravel is what fine to coarse subangular to rounded chalk, light grey fine to coarse subangular to subrounded mudston.	BH05	18.00	U	4	15.4	2.16	1.87	597	499	250	208	2.8	calcareous CLAY. Gravel is white fine to
BH06 13.50 U 4 13.6 2.18 1.92 541 612 306 255 3.3 slightly gravelly slightly sandy silty calcareous CLAY with occasional dar greyish brown mottling. Gravel is which fine to coarse subangular to rounded chalk, light grey fine to coarse subangular to subrounded mudston.								801	521	261			The data is a second contains
BH06 13.50 U 4 13.6 2.18 1.92 541 612 306 255 3.3 greyish brown mottling. Gravel is what fine to coarse subangular to rounded chalk, light grey fine to coarse subangular to subrounded mudston.								272	574	287			
subangular to subrounded mudston	BH06	13.50	U	4	13.6	2.18	1.92				255	3.3	greyish brown mottling. Gravel is white fine to coarse subangular to rounded
								805	639	320			subangular to subrounded mudstone,
													and write and grey mit.

Method of Preparation: BS 1377: Part 1: 1990: 7.4.2 & 8, Part 2: 1990: 7.2, Part 7: 1990: 8.3

Method of Test: BS 1377: Part 2: 1990:3 Determination of Moisture Content, Part2: 1990:7 Determination of Density, Part 7: 1990: 8 Undrained Shear

Strenth, 9 Multistage Loading

Type of Sample Key:

U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments: Remarks to Include:

Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample, oven

drying temperature if not 105-110°C

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 06/11/2018

0998

Contract	UK16.2241B - Middlegate Road, Kirton
Serial No.	S33960

DETERMINATION OF UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

	OF FORE FRESSORE											
Borehole /Pit No.	Depth (m)	Туре	Referer	nce	Description				Remarks			
BH01	9.20	U	1		silty calcareous C	gh strength) dark grey sl LAY with occasional dark ne to coarse subangular	Coarse gravel noted in sample after testing.					
Initial Specimen		Hei	Height		Diameter	Weight	Water Content	В	ulk Density	Dry Density		
	Depth of	(m	ım)		(mm)	(g)	(%)		(Mg/m³)	(Mg/m³)		
	Top of Specimen (m) 9.27	199.0			102.3	3574	16.4		2.18	1.87		
TEST INFO	ORMATION	l	Rate of S	Strair	n 2.0	% per Min	Rubber Membrai	ne T	hickness	0.6 mm		

Specimen at failure	Measured Cell	Charles of Eathers	Stress Corre	ections (kPa)	Corrected Max.	Shear Stress Cu,	Mohrs Circle Analysis		
()	Pressure, σ3 (kPa)	Strain at Failure (%)	Rubber Membrane	Piston Friction	Deviator Stress, (σ1-σ3)f (kPa)	½(σ1-σ3)f (kPa)	Cu (kPa)	PHI (degrees)	
\	187	15.3	1.8	/	468	234			
	373	17.5	2.0	11.0	489	245	209	3.3	
	558	20.2	2.3	18.4	514	257			

Method of Preparation: BS 1377: Part 1: 1990

Method of Test: BS 1377: Part 7: 1990: 8 Definitive Method, 1990: 9 Multi-stage loading

Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments: Tested in Vertical Condition

UKAS Calibration - loads from 0.2 to 10kN

Remarks to Include: Sample disturbance, loss of moisture, variation form test procedure, location and origin of test specimen within original sample, oven drying

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 06/11/2018

0998

Contract	UK16.2241B - Middlegate Road, Kirton
Serial No.	S33960

DETERMINATION OF UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

	OF TORE TRESSORE											
Borehole /Pit No.	Depth (m)	Type Reference				Descriptio	Remarks					
BH01	15.20	U	3		silty calcareous C	ery stiff (Very high strength) dark grey slightly gravelly slightly sandy lty calcareous CLAY with occasional dark greyish brown mottling. coarse gravel noted in sample ravel is white fine to coarse subangular to rounded chalk and rare ne to coarse flint.						
Initial S	Initial Specimen		Height		Diameter	Weight	Water Content	В	Bulk Density	Dry Density		
	Depth of	(m	(mm)		(mm)	(g)	(%)		(Mg/m^3)	(Mg/m³)		
	Top of Specimen (m) 15.31	165.4			102.7 3045		16.1		2.22	1.91		
TEST INFORMATION Rate of Strai					n 2.0	Rubber Membra	Rubber Membrane Thickness 0.6					

10

Strain (%)

Specimen at failure	Measured Cell	Charles of Earline	Stress Corre	ections (kPa)	Corrected Max.	Shear Stress Cu,	Mohrs Circle Analysis		
Specimen at failure	Pressure, σ3 (kPa)	Strain at Failure (%)	Rubber Membrane	Piston Friction	Deviator Stress, (σ1-σ3)f (kPa)	½(σ1-σ3)f (kPa)	Cu (kPa)	PHI (degrees)	
\	308	15.1	1.8	/	511	256			
1)	607	17.9	2.1	15.3	538	269	236	2.0	
	804	19.9	2.2	23.8	548	274			

20

Method of Preparation: BS 1377: Part 1: 1990

0

0

Method of Test: BS 1377: Part 7: 1990: 8 Definitive Method, 1990: 9 Multi-stage loading

Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

15

Comments: Tested in Vertical Condition

5

UKAS Calibration - loads from 0.2 to 10kN

Remarks to Include: Sample disturbance, loss of moisture, variation form test procedure, location and origin of test specimen within original sample, oven drying

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 06/11/2018

0998

Contract	UK16.2241B - Middlegate Road, Kirton
Serial No.	S33960

DETERMINATION OF UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

	OF TORE TRESSORE										
Borehole /Pit No.	Depth (m)	Туре	Referer	nce		Descriptio	R	Remarks			
BH01	18.20	U	4		sandy silty calcar	high strength) dark grey eous CLAY with occasion is white fine to coarse su		Coarse gravel noted in sample after testing.			
Initial S	pecimen	Hei	Height		Diameter	Weight	Water Content	Bulk Density	Dry Density		
	Depth of	(mm)			(mm)	(g)	(%)	(Mg/m³)	(Mg/m³)		
	Top of Specimen (m) 18.36	167.3			102.4 3041		14.4	2.21	1.93		
TEST INFO	ORMATION	I	Rate of S	Strair	n 2.0 % per Min Rubber Membran			ne Thickness	Thickness 0.6 mm		

Specimen at failure	Measured Cell	c	Stress Corre	ections (kPa)	Corrected Max.	Shear Stress Cu,	Mohrs Circle Analysis		
Specimen at failure	Pressure, σ3 (kPa)	Strain at Failure (%)	Rubber Membrane	Piston Friction	Deviator Stress, (σ1-σ3)f (kPa)	½(σ1-σ3)f (kPa)	Cu (kPa)	PHI (degrees)	
	367	14.9	1.8	/	664	332			
	604	17.5	2.0	9.8	692	346	302	2.5	
	806	19.7	2.2	20.2	704	352			

Method of Preparation: BS 1377: Part 1: 1990

Method of Test: BS 1377: Part 7: 1990: 8 Definitive Method, 1990: 9 Multi-stage loading

Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments: Tested in Vertical Condition

UKAS Calibration - loads from 0.2 to 10kN

Remarks to Include: Sample disturbance, loss of moisture, variation form test procedure, location and origin of test specimen within original sample, oven drying

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 06/11/2018

0998

Contract	UK16.2241B - Middlegate Road, Kirton
Serial No.	S33960

DETERMINATION OF UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

					<u> </u>	1 OILE I ILESSON				
Borehole /Pit No.	Depth (m)	Туре	Referer	nce		Descriptio		Remarks		
BH02	10.10	U	1		silty calcareous C rare decayed roo	igh strength) dark grey si LAY with occasional dark ts. Gravel is white fine to Id light grey mudstone.	Coarse gravel noted in sample after testing.			
Initial S	Initial Specimen		Height		Diameter	Weight	Water Content	В	ulk Density	Dry Density
	Depth of	(mm)			(mm)	(g)	(%)		(Mg/m³)	(Mg/m³)
Top of Specimen (m)		198.4			102.2 3537		15.6		2.17	1.88
TEST INFO	ORMATION		Rate of S	Strai	n 2.0	% per Min	Rubber Membra	ne Th	nickness	0.6 mm

Specimen at failure	Measured Cell	Strain at Failure (%)	Stress Corre	ections (kPa)	Corrected Max. Deviator Stress, (σ 1- σ 3)f (kPa)	Shear Stress Cu,	Mohrs Circle Analysis	
Specimen at famure	Pressure, σ3 (kPa)		Rubber Membrane	Piston Friction		½(σ1-σ3)f (kPa)	Cu (kPa)	PHI (degrees)
1 7	200	15.0	1.8	/	428	214		
'	404	17.3	2.0	9.9	457	229	187	3.8
	598	20.2	2.3	18.5	483	242		

Method of Preparation: BS 1377: Part 1: 1990

Method of Test: BS 1377: Part 7: 1990: 8 Definitive Method, 1990: 9 Multi-stage loading

Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments: Tested in Vertical Condition

UKAS Calibration - loads from 0.2 to 10kN

Remarks to Include: Sample disturbance, loss of moisture, variation form test procedure, location and origin of test specimen within original sample, oven drying

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 06/11/2018

0998

Contract	UK16.2241B - Middlegate Road, Kirton
Serial No.	S33960

DETERMINATION OF UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

					<u> </u>	TOTAL TIMESSON				
Borehole /Pit No.	Depth (m)	Type	Reference			Descriptio		Remarks		
ВН02	13.10	U	2		Very stiff (Very high strength) dark grey slightly gravelly slightly sandy silty calcareous CLAY. Gravel is white fine to coarse subangular to rounded chalk and rare fine to medium flint.				Coarse gravel noted in sample after testing.	
Initial S	pecimen	Hei	ight		Diameter	Weight	Water Content	В	ulk Density	Dry Density
	Depth of	(m	ım)		(mm)	(g)	(%)		(Mg/m³)	(Mg/m³)
	Top of Specimen (m) 13.18	20	0.1		101.0	3485	14.9		2.17	1.89
TEST INFO	ORMATION	I	Rate of S	Strai	n 2.0	% per Min	Rubber Membrai	ne Tl	hickness	0.6 mm

Specimen at failure	Measured Cell	Strain at Failure (%)	Stress Corre	ections (kPa)	Corrected Max. Deviator Stress, (σ1-σ3)f (kPa)	Shear Stress Cu,	Mohrs Circle Analysis		
Specimen at failure	Pressure, σ3 (kPa)		Rubber Membrane	Piston Friction		½(σ1-σ3)f (kPa)	Cu (kPa)	PHI (degrees)	
	265	9.7	1.3	/	460	230			
	531	15.1	1.8	12.3	523	262	188	5.0	
	794	20.1	2.3	25.1	562	281			

Method of Preparation: BS 1377: Part 1: 1990

Method of Test: BS 1377: Part 7: 1990: 8 Definitive Method, 1990: 9 Multi-stage loading

Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments: Tested in Vertical Condition

UKAS Calibration - loads from 0.2 to 10kN

Remarks to Include: Sample disturbance, loss of moisture, variation form test procedure, location and origin of test specimen within original sample, oven drying

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 06/11/2018

Contract UK16.2241B - Middlegate Road, Kirton
Serial No. S33960

DETERMINATION OF UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

	0.101111100111									
Borehole /Pit No.	Depth (m)	Туре	Reference			Descriptio		Remarks		
BH03	8.50	U	1		Stiff (High strength) very dark grey slightly gravelly slightly sandy silty calcareous CLAY. Gravel is white fine to medium subangular to rounded chalk and rare fine to coarse flint.				Coarse gravel noted in sample after testing.	
Initial S	pecimen	Hei	eight		Diameter	Weight	Water Content	В	Bulk Density	Dry Density
	Depth of	(m	nm)		(mm)	(g)	(%)	(Mg/m³)		(Mg/m³)
	Top of Specimen (m) 8.61	20	200.0		101.5	3512	17.6		2.17	1.85
TEST INFO	ORMATION	I	Rate of	Strai	n 2.0	% per Min	Rubber Membrane Th		hickness	0.6 mm

Specimen at failure	Measured Cell	Strain at Failure (%)	Stress Corre	ections (kPa)	Corrected Max. Deviator Stress, (σ1-σ3)f (kPa)	Shear Stress Cu, ½(σ1-σ3)f (kPa)	Mohrs Circle Analysis		
Specimen at failure	Pressure, σ3 (kPa)		Rubber Membrane	Piston Friction			Cu (kPa)	PHI (degrees)	
	170	9.1	1.2	/	222	111			
	340	15.1	1.8	9.0	264	132	87	5.2	
	513	19.9	2.3	16.4	290	145			

Method of Preparation: BS 1377: Part 1: 1990

Method of Test: BS 1377: Part 7: 1990: 8 Definitive Method, 1990: 9 Multi-stage loading

Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments: Tested in Vertical Condition

UKAS Calibration - loads from 0.2 to 10kN

Remarks to Include: Sample disturbance, loss of moisture, variation form test procedure, location and origin of test specimen within original sample, oven drying

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 06/11/2018

Contract UK16.2241B - Middlegate Road, Kirton
Serial No. S33960

DETERMINATION OF UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

	OF PORE PRESSURE									
Borehole /Pit No.	Depth (m)	Type	Reference			Descriptio	R	Remarks		
вноз	11.50	U	2			igh strength) brown sligh LAY. Gravel is white fine	•			
Initial S	pecimen	Hei	ght		Diameter	Weight	Water Content	Bulk Density	Dry Density	
	Depth of	(m	ım)		(mm)	(g)	(%)	(Mg/m³)	(Mg/m³)	
	Top of Specimen (m) 11.57	19	8.9		102.7	3554	16.3	2.16	1.86	
TEST INFO	ORMATION	I	Rate of S	Strai	n 2.0	% per Min	Rubber Membra	ne Thickness	0.6 mm	

Specimen at failure	Measured Cell	Strain at Failure (%)	Stress Corre	ections (kPa)	Corrected Max. Deviator Stress, (σ1-σ3)f (kPa)	Shear Stress Cu,	Mohrs Circle Analysis		
Specimen at failure	Pressure, σ3 (kPa)		Rubber Membrane	Piston Friction		½(σ1-σ3)f (kPa)	Cu (kPa)	PHI (degrees)	
	232	8.7	1.2	/	406	203			
(459	12.9	1.6	11.9	451	226	166	4.9	
	692	20.1	2.3	22.0	491	246			

Method of Preparation: BS 1377: Part 1: 1990

Method of Test: BS 1377: Part 7: 1990: 8 Definitive Method, 1990: 9 Multi-stage loading

Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments: Tested in Vertical Condition

UKAS Calibration - loads from 0.2 to 10kN

Remarks to Include: Sample disturbance, loss of moisture, variation form test procedure, location and origin of test specimen within original sample, oven drying

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 06/11/2018

0998

Contract	UK16.2241B - Middlegate Road, Kirton
Serial No.	S33960

DETERMINATION OF UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

Borehole /Pit No.	Depth (m)	Type	Referer	nce		Descriptio	R	Remarks		
BH04	8.50	U	2	silty o	stiff (Very h calcareous C ded chalk.	· ·				
Initial S	pecimen	Hei	ight	Dian	neter	Weight	Water Content	Bulk Density	Dry Density	
	Depth of	(m	ım)	(m	nm)	(g)	(%)	(Mg/m³)	(Mg/m³)	
	Top of Specimen (m) 8.57	19	9.0	10	2.7	3676	15.8	2.23	1.93	

TEST INFORMATION Rate of Strain 2.0 % per Min Rubber Membrane Thickness 0.6 mm

Specimen at failure	Measured Cell	Strain at Failure (%)	Stress Corre	ections (kPa)	Corrected Max. Deviator Stress, (σ1-σ3)f (kPa)	Shear Stress Cu,	Mohrs Circle Analysis		
Specimen at failure	Pressure, σ3 (kPa)		Rubber Membrane	Piston Friction		½(σ1-σ3)f (kPa)	Cu (kPa)	PHI (degrees)	
	173	10.2	1.3	/	336	168			
_ \	344	14.9	1.8	9.8	374	187	140	4.8	
	512	19.9	2.2	17.5	398	199			

Method of Preparation: BS 1377: Part 1: 1990

Method of Test: BS 1377: Part 7: 1990: 8 Definitive Method, 1990: 9 Multi-stage loading

Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments: Tested in Vertical Condition

UKAS Calibration - loads from 0.2 to 10kN

Remarks to Include: Sample disturbance, loss of moisture, variation form test procedure, location and origin of test specimen within original sample, oven drying

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 06/11/2018

0998

Contract	UK16.2241B - Middlegate Road, Kirton
Serial No.	S33960

DETERMINATION OF UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

C C NEGOGILE											
Borehole /Pit No.	Depth (m)	Туре	Refere	nce	Description				Remarks		
BH05	9.00	U	1		Very stiff (Very high strength) very dark grey slightly gravelly slightly sandy silty calcareous CLAY. Gravel is white fine to medium subangular to rounded chalk and rare fine to medium flint.						
Initial S	Initial Specimen		Height		Diameter	Weight	Water Content	В	ulk Density	Dry Density	
	•		(mm)		(mm)	(g)	(%)		(Mg/m³)	(Mg/m³)	
	Top of Specimen (m) 9.09	15	1.0		102.3	2746	16.8		2.21	1.89	
TEST INFO	ORMATION	J	Rate of	Strai	n 1.9	% per Min	Rubber Membra	ne Tl	hickness	0.6 mm	

Specimen at failure	Measured Cell	Charles of Fall and	Stress Corre	ections (kPa)	Corrected Max.	Shear Stress Cu,	Mohrs Circle Analysis		
Specimenacianure	Pressure, σ3 (kPa)	Strain at Failure (%)	Rubber Membrane	Piston Friction	Deviator Stress, (σ1-σ3)f (kPa)	½(σ1-σ3)f (kPa)	Cu (kPa)	PHI (degrees)	
	180	11.5	1.5	/	416	208			
	364	15.7	1.9	9.4	462	231	172	5.4	
	544	20.1	2.3	18.2	492	246			

Method of Preparation: BS 1377: Part 1: 1990

Method of Test: BS 1377: Part 7: 1990: 8 Definitive Method, 1990: 9 Multi-stage loading

Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments: Tested in Vertical Condition

UKAS Calibration - loads from 0.2 to 10kN

Remarks to Include: Sample disturbance, loss of moisture, variation form test procedure, location and origin of test specimen within original sample, oven drying

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 06/11/2018

0998

Contract	UK16.2241B - Middlegate Road, Kirton
Serial No.	S33960

DETERMINATION OF UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

OT TORE TRESSORE											
Borehole /Pit No.	Depth (m)	Type Reference				Descriptio	Remarks				
BH05	18.00	U	4		sandy silty calcar	ery stiff (Very high strength) very dark grey slightly gravelly slightly andy silty calcareous CLAY. Gravel is white fine to medium ubangular to rounded chalk.					
Initial S	Initial Specimen		Height		Diameter	Weight	Water Content	В	ulk Density	Dry Density	
	Depth of	(mm) 199.4			(mm)	(g)	(%)		(Mg/m³)	(Mg/m³)	
	Top of Specimen (m) 18.12				102.8	3572	15.4		2.16	1.87	
TEST INFO	ORMATION	I	Rate of	Strai	n 1.0 % per Min Rubber Membra			ne T	e Thickness 0.6 mm		

Specimen at failure	Measured Cell	Charles of Earline	Stress Corre	ections (kPa)	Corrected Max.	Shear Stress Cu,	Mohrs Circle Analysis		
Specifien at failure	Pressure, σ3 (kPa)	Strain at Failure (%)	Rubber Membrane	Piston Friction	Deviator Stress, (σ1-σ3)f (kPa)	½(σ1-σ3)f (kPa)	Cu (kPa)	PHI (degrees)	
<u></u>	361	11.1	1.4	/	475	238			
/	597	13.5	1.6	13.6	499	250	208	2.8	
	801	19.7	2.2	22.7	521	261			

Method of Preparation: BS 1377: Part 1: 1990

Method of Test: BS 1377: Part 7: 1990: 8 Definitive Method, 1990: 9 Multi-stage loading

Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments: Tested in Vertical Condition

UKAS Calibration - loads from 0.2 to 10kN

Remarks to Include: Sample disturbance, loss of moisture, variation form test procedure, location and origin of test specimen within original sample, oven drying

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 06/11/2018

Contract UK16.2241B - Middlegate Road, Kirton
Serial No. S33960

DETERMINATION OF UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

J J.I 112500112										
Borehole /Pit No.	Depth (m)	Type	Referer	nce	Descriptio	R	Remarks			
вн06	13.50	U	4	silty calcareous C Gravel is white fi	LAY with occasional darl	lightly gravelly slightly sa c greyish brown mottling to rounded chalk, light g mudstone, white and gr	Coarse gravel no	Coarse gravel noted in sample after		
Initial Specimen		He	ight	Diameter	Weight	Water Content	Bulk Density	Dry Density		
	Depth of	Top of pecimen (m) 198.5		(mm)		(mm)	(g)	(%)	(Mg/m³)	(Mg/m³)
	Specimen			102.3	3554	13.6 2.18		1.92		
TEST INFO	ORMATION		Rate of	Strain 2.0	in 2.0 % per Min Rubber Membrane Tl			0.6 mm		

Specimen at failure	Measured Cell	6	Stress Corre	ections (kPa)	Corrected Max.	Shear Stress Cu,	Mohrs Circle Analysis		
Specimen at failure	Pressure, σ3 (kPa)	Strain at Failure (%)	Rubber Membrane	Piston Friction	Deviator Stress, (σ1-σ3)f (kPa)	½(σ1-σ3)f (kPa)	Cu (kPa)	PHI (degrees)	
	272	14.5	1.7	/	574	287			
	541	16.9	2.0	13.8	612	306	255	3.3	
	805	19.9	2.3	26.6	639	320			

Method of Preparation: BS 1377: Part 1: 1990

Method of Test: BS 1377: Part 7: 1990: 8 Definitive Method, 1990: 9 Multi-stage loading

Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments: Tested in Vertical Condition

UKAS Calibration - loads from 0.2 to 10kN

Remarks to Include: Sample disturbance, loss of moisture, variation form test procedure, location and origin of test specimen within original sample, oven drying

TEST REPORT

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 06/11/2018

Contract Tokio.22410 - Wildulegate Road, Kirton	Contract	UK16.2241B - Middlegate Road, Kirton
---	----------	--------------------------------------

S33960 Serial No.

	DETERMINATION OF THE ONE-DIMENSIONAL CONSOLIDATION PROPERTIES													
Borehole/ Pit No.	Depth (m)	Туре	Ref.	Specin Depth (r Orient	n) and	Water Content (%)		Descri	ption		Remarks			
вн06	1.20	U	1	1.2 Horizo		23.5		r clayey SILT wing, and ferrug	σ,	_	Visible gravel picked out by hand and replaced with matrix material			
	Initial Conditions					Increment No.	Load (kN/m²)	Change in Height (mm)	Void Ratio	Cv (m²/yr)	Mv (m²/MN)	Temp (°C)	Corrected Cv	
Height		mm		18.99		1	25	0.105	0.652	67.20	0.22	21	65.00	
Diameter		mm		74.99		2	50	0.149	0.648	0.62	0.09	21	0.60	
Wet Weight		g		162.08		3	100	0.215	0.643	2.17	0.07	21	2.10	
Water Conter	nt	%		23.5		4	200	0.300	0.635	2.00	0.05	20	2.00	
Bulk Density		Mg/m³		1.93		5	25	0.294	0.636		0.00	20		
Particle Densi	ity		Assu	med	2.60									
Voids Ratio	Voids Ratio 0.661													
Degree of Saturation % 92														
Swelling Pres	Swelling Pressure kN/m ² <25													
Dry Density Mg/m³				1.56										

Method of Preparation:

Method of Test: BS 1377: Part 5: 1990: 3.5

Method of Time Fitting Used: Square root

Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments:

Remarks to Include:

Sample disturbance, loss of water, variation from test procedure, location and origin of test specimen within

original sample, oven drying temperature if not 105-110 °C.

EPS Ltd 7B Caxton House

Broad Street

Cambourne Cambridgeshire CB23 6JN

Exova Jones Environmental

Registered Office: Exova Environmental UK Limited, 10 Lower Grosvenor Place, London, SW1W 0EN. Reg No. 11371415

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside

CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention : Sam Setchell

Date: 2nd November, 2018

Your reference : UK16.2241B

Our reference: Test Report 18/17370 Batch 1

Location: Kirton

Date samples received: 27th October, 2018

Status: Final report

Issue:

Twelve samples were received for analysis on 27th October, 2018 of which twelve were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

islaumed.

Lucas Halliwell

Project Co-ordinator

Client Name: EPS Ltd

Reference: UK16.2241B
Location: Kirton

Contact: Sam Setchell JE Job No.: 18/17370

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

	10/11/01/0												
J E Sample No.	1	2	3	4	5	6	7	8	9	10			
Sample ID	BH01	BH01	BH01	BH01	BH01	BH01	BH01	BH01	BH01	BH01			
Depth	1.20-1.65	2.20-2.65	4.20-4.65	5.20-5.65	6.20-6.65	7.70-8.15	8.70	10.20	11.70	14.70		e attached n	
COC No / misc											abbrevi	ations and ad	cronyms
Containers	В	В	В	В	В	В	В	В	В	В			
Sample Date	<>	<>	<>	<>	<>	<>	<>	<>	<>	<>			
Sample Type	Sand	Sand	Sand	Sand	Clay	Clay	Clay	Clay	Clay	Clay			
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	27/10/2018	27/10/2018	27/10/2018	27/10/2018	27/10/2018	27/10/2018	27/10/2018	27/10/2018	27/10/2018	27/10/2018			No.
Sulphur as S	0.03	0.04	0.07	0.25	0.31	0.03	3.80	1.11	0.98	1.04	<0.01	%	TM30/PM15
Total Sulphate as SO4 **M	306	428	636	1174	955	361	7794	6748	3809	6153	<50	mg/kg	TM50/PM29
Sulphate as SO4 (2:1 Ext) #M	0.0372	0.0682	0.0885	0.1415	0.1949	0.0516	0.3183	0.3273	0.2178	0.3017	<0.0015	g/l	TM38/PM20
рН **	8.50	8.58	8.35	8.40	8.63	9.09	9.09	8.90	8.68	8.66	<0.01	pH units	TM73/PM11
Sample Type	Sand	Sand	Sand	Sand	Clay	Clay	Clay	Clay	Clay	Clay		None	PM13/PM0
Sample Colour	Light Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Light Brown	Dark Brown	Dark Brown	Dark Brown	Dark Brown		None	PM13/PM0
Other Items	none	none	none	none	sand, stones	sand, stones	chalk	chalk	chalk	chalk		None	PM13/PM0
													·

Client Name: EPS Ltd

Reference: UK16.2241B Location: Kirton

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Report : Solid

Contact: Sam Setchell JE Job No.: 18/17370

JE Job No.:	18/17370							_		
J E Sample No.	11	12						1		
Sample ID	BH01	BH01								
Depth	16.20	17.70						Please se	e attached rations and a	otes for all
COC No / misc								abblevi	alions and a	Lionyms
Containers	В	В								
Sample Date	<>	<>								
Sample Type	Clay	Clay								
Batch Number	1	1								Method
Date of Receipt	27/10/2018	27/10/2018						LOD/LOR	Units	No.
Sulphur as S	0.97	1.29						<0.01	%	TM30/PM15
Total Sulphate as SO4 #M	5418	5219						<50	mg/kg	TM50/PM29
Sulphate as SO4 (2:1 Ext) #M	0.2984	0.3265						<0.0015	g/l	TM38/PM20
рН #М	8.46	8.63						<0.01	pH units	TM73/PM11
Sample Type	Clay	Clay							None	PM13/PM0
		Dark Brown							None	PM13/PM0
Other Items	chalk	chalk							None	PM13/PM0
		1	I.	1	I.	1	1		l.	

UK16.2241B

Notification of Deviating Samples

Client Name: EPS Ltd Matrix : Solid

Location: Kirton

Reference:

Contact: Sam Setchell

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
18/17370	1	BH01	1.20-1.65	1	All analyses	No sampling date given
18/17370	1	BH01	2.20-2.65	2	All analyses	No sampling date given
18/17370	1	BH01	4.20-4.65	3	All analyses	No sampling date given
18/17370	1	BH01	5.20-5.65	4	All analyses	No sampling date given
18/17370	1	BH01	6.20-6.65	5	All analyses	No sampling date given
18/17370	1	BH01	7.70-8.15	6	All analyses	No sampling date given
18/17370	1	BH01	8.70	7	All analyses	No sampling date given
18/17370	1	BH01	10.20	8	All analyses	No sampling date given
18/17370	1	BH01	11.70	9	All analyses	No sampling date given
18/17370	1	BH01	14.70	10	All analyses	No sampling date given
18/17370	1	BH01	16.20	11	All analyses	No sampling date given
18/17370	1	BH01	17.70	12	All analyses	No sampling date given

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 18/17370

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

ABBREVIATIONS and ACRONYMS USED

18/17370

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to an Exova Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range

Exova Jones Environmental

Method Code Appendix

JE Job No: 18/17370

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM13	A visual examination of the solid sample is carried out to ascertain sample make up, colour and any other inclusions. This is not a geotechnical description.	PM0	No preparation is required.			AR	
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes	Yes	AD	Yes
TM50	Acid soluble sulphate (Total Sulphate) analysed by ICP-OES	PM29	Dried and ground solid sample is boiled with dilute hydrochloric acid, the resulting liquor is then analysed.	Yes	Yes	AD	Yes
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes	Yes	AR	No

EPS Ltd 7B Caxton House

Broad Street

Cambourne Cambridgeshire CB23 6JN

Exova Jones Environmental

Registered Office: Exova Environmental UK Limited, 10 Lower Grosvenor Place, London, SW1W 0EN. Reg No. 11371415

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside

CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention : Sam Setchell

Date: 2nd November, 2018

Your reference : UK16.2241B

Our reference: Test Report 18/17370 Batch 1

Location: Kirton

Date samples received: 27th October, 2018

Status: Final report

Issue:

Twelve samples were received for analysis on 27th October, 2018 of which twelve were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

islaumed.

Lucas Halliwell

Project Co-ordinator

Client Name: EPS Ltd

Reference: UK16.2241B
Location: Kirton

Contact: Sam Setchell JE Job No.: 18/17370

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

	10/11/01/0												
J E Sample No.	1	2	3	4	5	6	7	8	9	10			
Sample ID	BH01	BH01	BH01	BH01	BH01	BH01	BH01	BH01	BH01	BH01			
Depth	1.20-1.65	2.20-2.65	4.20-4.65	5.20-5.65	6.20-6.65	7.70-8.15	8.70	10.20	11.70	14.70		e attached n	
COC No / misc											abbrevi	ations and ad	cronyms
Containers	В	В	В	В	В	В	В	В	В	В			
Sample Date	<>	<>	<>	<>	<>	<>	<>	<>	<>	<>			
Sample Type	Sand	Sand	Sand	Sand	Clay	Clay	Clay	Clay	Clay	Clay			
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	27/10/2018	27/10/2018	27/10/2018	27/10/2018	27/10/2018	27/10/2018	27/10/2018	27/10/2018	27/10/2018	27/10/2018			No.
Sulphur as S	0.03	0.04	0.07	0.25	0.31	0.03	3.80	1.11	0.98	1.04	<0.01	%	TM30/PM15
Total Sulphate as SO4 **M	306	428	636	1174	955	361	7794	6748	3809	6153	<50	mg/kg	TM50/PM29
Sulphate as SO4 (2:1 Ext) #M	0.0372	0.0682	0.0885	0.1415	0.1949	0.0516	0.3183	0.3273	0.2178	0.3017	<0.0015	g/l	TM38/PM20
рН **	8.50	8.58	8.35	8.40	8.63	9.09	9.09	8.90	8.68	8.66	<0.01	pH units	TM73/PM11
Sample Type	Sand	Sand	Sand	Sand	Clay	Clay	Clay	Clay	Clay	Clay		None	PM13/PM0
Sample Colour	Light Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Light Brown	Dark Brown	Dark Brown	Dark Brown	Dark Brown		None	PM13/PM0
Other Items	none	none	none	none	sand, stones	sand, stones	chalk	chalk	chalk	chalk		None	PM13/PM0
													·

Client Name: EPS Ltd

Reference: UK16.2241B Location: Kirton

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Report : Solid

Contact: Sam Setchell JE Job No.: 18/17370

JE Job No.:	18/17370							_		
J E Sample No.	11	12						1		
Sample ID	BH01	BH01								
Depth	16.20	17.70						Please se	e attached rations and a	otes for all
COC No / misc								abblevi	alions and a	Lionyms
Containers	В	В								
Sample Date	<>	<>								
Sample Type	Clay	Clay								
Batch Number	1	1								Method
Date of Receipt	27/10/2018	27/10/2018						LOD/LOR	Units	No.
Sulphur as S	0.97	1.29						<0.01	%	TM30/PM15
Total Sulphate as SO4 #M	5418	5219						<50	mg/kg	TM50/PM29
Sulphate as SO4 (2:1 Ext) #M	0.2984	0.3265						<0.0015	g/l	TM38/PM20
рН #М	8.46	8.63						<0.01	pH units	TM73/PM11
Sample Type	Clay	Clay							None	PM13/PM0
		Dark Brown							None	PM13/PM0
Other Items	chalk	chalk							None	PM13/PM0
		1	I.	1	I.	1	1		l.	

UK16.2241B

Notification of Deviating Samples

Client Name: EPS Ltd Matrix : Solid

Location: Kirton

Reference:

Contact: Sam Setchell

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
18/17370	1	BH01	1.20-1.65	1	All analyses	No sampling date given
18/17370	1	BH01	2.20-2.65	2	All analyses	No sampling date given
18/17370	1	BH01	4.20-4.65	3	All analyses	No sampling date given
18/17370	1	BH01	5.20-5.65	4	All analyses	No sampling date given
18/17370	1	BH01	6.20-6.65	5	All analyses	No sampling date given
18/17370	1	BH01	7.70-8.15	6	All analyses	No sampling date given
18/17370	1	BH01	8.70	7	All analyses	No sampling date given
18/17370	1	BH01	10.20	8	All analyses	No sampling date given
18/17370	1	BH01	11.70	9	All analyses	No sampling date given
18/17370	1	BH01	14.70	10	All analyses	No sampling date given
18/17370	1	BH01	16.20	11	All analyses	No sampling date given
18/17370	1	BH01	17.70	12	All analyses	No sampling date given

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 18/17370

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

ABBREVIATIONS and ACRONYMS USED

18/17370

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to an Exova Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range

Exova Jones Environmental

Method Code Appendix

JE Job No: 18/17370

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM13	A visual examination of the solid sample is carried out to ascertain sample make up, colour and any other inclusions. This is not a geotechnical description.	PM0	No preparation is required.			AR	
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes	Yes	AD	Yes
TM50	Acid soluble sulphate (Total Sulphate) analysed by ICP-OES	PM29	Dried and ground solid sample is boiled with dilute hydrochloric acid, the resulting liquor is then analysed.	Yes	Yes	AD	Yes
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes	Yes	AR	No