Supplementary Ground Investigation

Land at Middlegate Road West

Frampton
Kirton
Lincolnshire
PE20 1DA

Prepared for:

Larkfleet Homes
Falcon Way
Bourne
Lincolnshire
PE10 0FF

LAND AT MIDDLEGATE ROAD WEST - KIRTON

NON TECHNICAL ENGINEERING SUMMARY

- Previous investigations identified the use of shallow foundations may be applicable across the site. However, it is understood the proposed development for the site requires the raising of site levels by between 1.0 and 1.7 m and it is therefore suggested that a piled foundation solution would be the most applicable.
- A preliminary analysis of allowable bearing capacity from a piled foundation solution is provided below. This takes into account the raising of site levels by around 1.5 m with a compressible fill material.

Depth of Pile	Pile Length Below Existing Ground Level (m bgl)	(m, allowing for raising levels)	Allowable Working Load (kN) (CFA Pile)	
		400mm Diameter Pile		
10	12	85	135	
12	14	170	250	
14	16	250	365	

- Given the presence of compressible materials across the site an analysis of settlement due to the filling of the site has been undertaken. The settlements stated should be allowed for in the design of services and utilities whereby the differential between settlements of buildings and the wider site will be to be considered.
- The River Terrace Deposits have a Design Sulphate Class (DS) of DS-1 with an aggressive chemical environment for concrete (ACEC) of AC-1. For the lower Ampthill Clay, a classification of DS5 and AC-4s is given, which is a particularly high concrete grade and may require special protective measures. However, the most suitable class will be defined by the foundation solution chosen and the use of piles may be able to mitigate this high somewhat.

The above points represent a simplified summary of the findings of this assessment and should not form the basis for key decisions for the proposed development. A thorough review of the details is contained within the following report, or alternatively get in touch and we'll talk you through it.

EPS Ref: UK16.2241 B

Project Reference:	UK16.2241 B	
Title:	Supplementary Ground Investigation Land at Belton Lane, Manthorpe	
Client:	Larkfleet Homes	
Date:	25 ${ }^{\text {th }}$ January 2019	
	7B Caxton House	T: 01954 710666
EPS Contact Details:	Broad Street Cambourne Cambridge \quad CB23 6JN	E: info@epstrategies.co.uk W: www.epstrategies.co.uk
Status:	Issue 1	

Author:	Reviewed:	Authorised:
Sam Setchell	Steve Bullock	Steve Bullock
Senior Consultant	Director	Director

This report has been prepared for the client(s) listed on the report title page. EPS accepts no liability or responsibility for use of, or reliance upon, this report and / or the information contained within it by third parties.

No part of this report, or references to it, may be included in published documents of any kind without approval from EPS.
This report and its contents, together with any supporting correspondence or other documentation, remain the property of Environmental Protection Strategies Ltd until paid for in full.

Where ground investigations have been conducted, these have been limited to the level of detail required for the site in order to achieve the objectives of the investigation.

The report has been written, reviewed and authorised by the persons listed above. It has also undergone EPS' quality management inspection. Should you require any further assistance regarding the information provided within the report, please do not hesitate to contact us.

The National Planning Policy Framework 2012 requires a competent person to prepare site investigation information, which is defined as a person with a recognised relevant qualification, sufficient experience in dealing with the type(s) of pollution or land instability, and membership of a relevant professional organisation. EPS considers that it fulfils these criteria and would welcome any request for staff CVs or case studies to demonstrate it.

As stated within DEFRA's Contaminated Land Statutory Guidance (2012), with any complex risk assessment it is possible that different suitably qualified people may reach slightly different conclusions when interpreting the same information. EPS recognises this and considers the conclusions presented within this report to be robust and appropriate but input from the Local Authority and their judgement in line with this guidance would still be welcomed.

Supplementary Ground Investigation
 Middlegate Road West - Kirton
 EPS Ref: UK16.2241 B

TABLE OF CONTENTS

1 INTRODUCTION 1
1.1 Scope of Work 1
1.2 Limitations and Constraints 2
2 SUMMARY OF PREVIOUS REPORTS 3
3 SUMMARY OF INTRUSIVE INVESTIGATIONS 4
3.1 Exploratory Hole Locations 4
3.2 In Situ Testing \& Soil Sampling 4
3.3 Laboratory Testing 4
4 FINDINGS OF THE INVESTIGATION 5
4.1 Ground Conditions 5
4.1.1 Topsoil 5
4.1.2 Tidal Flat Deposits 5
4.1.3 Ampthill Clay 6
4.2 Groundwater 6
4.3 Physical Evidence of Contamination 6
4.4 Geotechnical Testing 7
4.4.1 Laboratory Testing 7
4.4.2 In Situ Testing 8
5 GEOTECHNICAL APPRAISAL 9
5.1.1 Spread Foundations 9
5.1.2 Raft Foundation 9
5.2 Ground Improvement 9
5.2.1 Vibro-Compaction 9
5.2.2 Vibro Stone Columns 9
5.2.3 Vibro-Concrete Columns 10
5.2.4 Controlled Modulus Columns. 10
5.2.5 Piles 10
5.3 Ground Floor Construction 11
5.4 Settlement Assessment 11
5.5 Impacts of Settlement 11
5.6 Groundworks 11
5.6.1 Excavations 11
5.6.2 Raising Levels 12
5.7 Concrete Grade 12

EPS Ref: UK16.2241 B

Figures

Figure 1	Site Location Plan
Figure 2	Borehole Location Plan

Tables

Table 1 Geotechnical Laboratory Testing Schedule

Appendices

Appendix A Proposed Development Plans
Appendix B Site Specific Borehole Logs
Appendix C Geological Cross Sections
Appendix D Laboratory Results-Geotechnical

1 INTRODUCTION

Environmental Protection Strategies Ltd (EPS) was commissioned by Larkfleet Homes to complete a Supplementary Ground Investigation for a plot of land to the north of Middlegate Road, Kirton, Lincolnshire, PE20 1DA (the 'site'); see Figure 1.

The work was commissioned to provide supplementary geotechnical information on subsurface soil conditions across the site in order to allow the assessment of suitable foundation solutions and to assess potential settlements associated with raising levels. Supplementary geotechnical assessment was recommended within a previous Phase I and II Geo-Environmental Assessment undertaken by EPS in April 2017 (Ref: UK16.2241), in conjunction with which this report should be read.

The proposed development plans including external elevations and site drainage are included as Appendix A.

This report presents the findings, conclusions, and recommendations of the Supplementary Ground Investigation, undertaken as instructed.

The objectives of this investigation were as follows:
a) To collect information on ground conditions/strength and make appropriate recommendations for design of the proposed scheme.

1.1 Scope of Work

To perform an exploratory assessment of the site in accordance with the principles and requirements of BS5930:2015 'Code of Practice for Ground Investigation' the following tasks were undertaken:

Site Work:

- Site walkover, inspection and obtaining photographic records.
- Health and safety briefing/ site supervision.
- Drilling of 6 boreholes to a maximum depth of 20 m bgl using cable percussive (shell and auger) drilling rig.

Reporting:

- Data collection and Interpretation
- Reporting.

The findings and conclusions of these investigations are presented in the following sections.

1.2 Limitations and Constraints

The purpose of this report is to present the findings of a geotechnical investigation conducted at the location(s) specified. When examining the data collected from the investigations made during the assessment, Environmental Protection Strategies Ltd (EPS) makes the following statements:

No investigation method is capable of completely identifying all ground conditions that might be present in the soil or groundwater under a site. Where outlined in our report, we have examined the ground beneath a site by constructing a number of invasive ground probing. The locations of these probing's are considered to be representative of the condition of the whole site subsurface however, ground conditions are naturally variable and it may be possible that the ground conditions encountered may differ to those encountered during the investigation.

No visible evidence of Japanese Knotweed was identified during the site walkover, however this plant can be difficult to identify in the early stages of growth and therefore it is not always possible to identify its presence at certain times of the year. For this reason EPS cannot confirm that Japanese Knotweed rhizomes do not exist and it is recommended that if it is suspected that this species, or other similarly invasive plants are present at the site, a specialist contractor should be commissioned to make a detailed assessment.

The investigation was carried out to assess the significance of the underlying ground conditions as identified in this report. Unless EPS has otherwise indicated, no assessment of potential impact of any other previous uses has been made.

If third parties have been contracted / consulted during compilation of this report, the validity of any data they may have supplied, and which are included in the report, have been assessed as far as possible by EPS. However, EPS cannot guarantee the validity of these data.

2 SUMMARY OF PREVIOUS REPORTS

A previous Phase I and II Geo-Environmental Assessment was undertaken by EPS in April 2017 (Ref: UK16.2241). The pertinent geotechnical findings of which are outlined below:

Ground conditions were found to consist of a layer of topsoil underlain by Tidal Flat Deposits. These deposits were encountered as very loose to medium dense, clayey silts and sands and were found to the maximum depth of the boreholes undertaken (4.0m). Groundwater was recorded at approximately $2-3 \mathrm{~m}$ across the site, within the tidal flat deposits.

It was concluded that, while shallow soils may be suitable for the use of conventional spread foundation at a low allowable bearing capacity $\left(50 \mathrm{kN} / \mathrm{m}^{2}\right)$, the requirement to raise levels across the site reduce this capacity due to the increase in overburden and settlements that would be induced.

It was therefore considered that the option of a piled foundation would be more appropriate, with possible founding strata as the underlying Ampthill Clay which was not identified in the investigation. The report recommended that deep boreholes be undertaken across the site in order to inform the pile design.

3 SUMMARY OF INTRUSIVE INVESTIGATIONS

Intrusive ground investigations were undertaken between the $10^{\text {th }}$ and $19^{\text {th }}$ of October 2018 in accordance with EPS standard operating procedures, copies of which will be made available on request. A summary of all site activities is presented in the following sections:

3.1 Exploratory Hole Locations

Exploratory hole locations were selected through consideration of the proposed development layout, the location of below ground utilities as well as operational and health \& safety considerations. Borehole locations were agreed with the client prior to proceeding with the works.

A borehole location plan is presented as Figure 2.

3.2 In Situ Testing \& Soil Sampling

Each borehole was logged for ground conditions encountered and inspected for any physical evidence of contamination, such as soil staining, odour and the presence of separate phase liquids on a precautionary basis. Borehole logs are presented in Appendix B.

Standard or cone penetration tests (SPT / CPT) were carried out in all materials using an automatic trip hammer. The number of blows required to advance a standard split spoon, (or solid 60° nose cone for the CPT test) over the final 300 mm of a 450 mm total drive was recorded, and is shown on the borehole records at the penetration resistance (" N " value).

3.3 Laboratory Testing

Geotechnical testing was undertaken by Soil Property Testing, Huntingdon, a UKAS accredited laboratory. Samples obtained for analysis of pH and Sulphate content were submitted to Exova Jones Environmental of Flintshire, who hold appropriate UKAS / MCERT accreditation for the required testing. Samples were transported in laboratory supplied containers and delivered to the laboratory by approved courier.

Copies of chain of custody documentation are held by EPS and will be made available on request.

The schedule of testing is included as Table 1. The results of classification and strength testing are also shown on the borehole logs (Appendix B).

4 FINDINGS OF THE INVESTIGATION

This section of the report provides a summary of the findings of the various aspects of the ground investigation.

4.1 Ground Conditions

A total of six cable percussive (shell \& auger) boreholes were formed, three to a depth of 20 m and three to a depth of 15 m , the ground conditions encountered, from ground level, were found to comprise:

- Topsoil
- Tidal Flat Deposits
- Ampthill Clay

Site specific borehole logs are included as Appendix B with cross sections in Appendix C and give descriptions and depths of strata encountered. A summary of the general strata encountered across the site is provided in the table below, with more detailed description given in the following sub sections:

Geological Strata	Maximum Depth to Base of Strata(m bgl)	Strata Thickness (m)
Topsoil	0.6	$0.3-0.6$
Tidal Flat Deposits	8.3	$6.8-8.0$
Ampthill Clay Formation	$>20.0 \mathrm{~m}$	Unproven $(>12.9 \mathrm{~m})$

4.1.1 Topsoil

Topsoil was encountered in all borehole locations and extended to between 0.3 and 0.6 m depth. Topsoil was a light brown silty clay in the field to the east where a potato crop had recently been harvested. To the west of and centre of the site the topsoil was a darker brown silty clay and when wet was found to become soft and difficult to track across with the drilling rig (clayey).

4.1.2 Tidal Flat Deposits

Tidal flat deposits were found to underlie the site beneath the topsoil. This material comprised predominately soft to firm silts and clays with sand lenses. Very soft organic (peaty) clay layers have also been identified within these deposits between $4-6 \mathrm{~m}$ as well as beds of fine sands. The base of the deposits is marked by a bed of brown fine sand in the west of the site ($\mathrm{BH} 03-\mathrm{BH} 06$) but this is not seen to the east ($\mathrm{BH} 01 \& \mathrm{BH} 02$) . Tidal flat deposits were fully penetrated between 7.1 m (BH 04) and 8.3 m in BH 03 . Adjusting for site levels suggests that this depth is relatively consistent at between -5 and -6 m AOD.

A generalised profile of the Tidal flat deposits is as follows:

Soil Type	Inferred Soil Strength	Approximate Depth Range (m bgl)
Silty CLAY	Soft to Firm (20-40kPa)	$0.3-2.5$
Clayey /sandy SILT (occasionally peaty)	Very Soft to Soft $(15-25 \mathrm{kPa})$	$2.5-6$
Sandy CLAY/SAND (occasional gravel)	Firm /Medium Dense $(40-75 \mathrm{kPa})$	$6-8$

Further details on the lateral variation of this profile can be seen in the provided geological cross sections in Appendix C.

4.1.3 Ampthill Clay

A stiff to very stiff brown slightly gravelly slightly sandy silty calcareous clay was identified beneath the tidal flat deposits in all boreholes to the maximum extent $(>20 \mathrm{~m})$. The gravel within this material was identified as chalk and flint and the drillers described the material as a 'boulder clay'. A flint bounder was identified at 19 m in BH 03 .

This materials has been initially classified as representative of the Ampthill Clay, which is shown to be present in geological mapping. The field and laboratory description of the material, particularly in relation to the presence of chalk and flint gravels, suggest that this material may well be glacial in origin. However, for simplicity, this has been henceforth referred to as the Ampthill Clay.

This material has been found to be stiff (high strength) at the top of the unit becoming very stiff (very high strength).

4.2 Groundwater

Groundwater was struck within the tidal flat deposits in all boreholes. Two to three strikes were noted in each location and were found to be associated with beds in which sand lenses or more granular materials were noted. The shallowest water strike was at 2.2 m within BH 04 which showed slow ingress. This was sealed out at 6.3 m . At the end drilling the boreholes, which were cased until the Ampthill clay was encountered, all boreholes were dry. This suggests all water strikes were associated with perched water within the superficial deposits.

4.3 Physical Evidence of Contamination

No made or reworked ground was identified other than the recently worked topsoil materials. There was therefore no palpable evidence of contamination, waste or putrefiable material encountered in any of the sampling locations during the investigation including no visual or olfactory evidence of hydrocarbon staining.

4.4 Geotechnical Testing

4.4.1 Laboratory Testing

The results of geotechnical laboratory testing are summarised in the table below and all geotechnical sample results obtained from the laboratory are included as Appendix D. The key results of laboratory testing on geotechnical soil samples are summarised below.

Strata	Range of Parameters									
	Moisture Content (\%)		Plasticity Index (\%)		Soil Fraction (\%)				$\mathrm{Cu}(\mathrm{kPa})$	
	Min	Max	Min	Max	O20	¢	ص	-	Min	Max
Tidal Flat Deposits	14.1	57.1	9(6)	16(14)	0-10	15-82	5-51	2-34	-	-
Ampthill Clay	13.6	18.9	23(16)	24 (22)	-	-	-	-	87	302

(\#) = Modified Plasticity Index
The natural moisture content was established for five samples of cohesive soil in accordance with BS1377 Part 1:7.3 and BS1377: Part 2:3.2.

Atterberg limit tests were undertaken on six samples of cohesive soils in accordance with BS1377: Part 1:7.4 and BS1377: Part 2:3.2\&4.2.

Particle size distribution tests were undertaken on five samples of granular material in accordance with BS1377: Part 2: 1990. Clause 9.2.

Multistage undrained triaxial compression tests (without measurement of pore pressure) were undertaken on eleven undisturbed samples. Tests were carried out in accordance with BS1377: Part 7: 1990:8.

One-Dimensional Consolidation testing was undertaken on one undisturbed sample. Tests were carried out in accordance with BS1377: Part 5: 1990:3.5.

A laboratory analysis testing schedule is presented as Table 1.

4.4.2 In Situ Testing

Standard or cone penetration tests (SPT / CPT) were carried out in all materials using an automatic trip hammer. These tests were undertaken at alternative depths within cohesive materials in order to allow for undisturbed sampling. The results of this testing are summarised in the chart below:

The in-situ testing highlights the present of soft materials (SPT N<5) within to top 5 m of surficial deposits. A general increase is seen within the granular materials between $5-8 \mathrm{~m}$ from which point the stiff Ampthill Clay is encountered and SPT N vales increase with depth.

5 GEOTECHNICAL APPRAISAL

This investigation has confirmed that the predominantly soft silty tidal flat deposits are present across the site and are found to continue to a depth of around 8 m . Underlying this material stiff clay becoming very stiff clay is identified. Triaxial testing has shown this material to be of very high to extremely high strength. As noted in the previous phase of investigation, it is possible that shallow foundations may be suitable for use across the site with a low bearing capacity. However, it is understood that the proposed development scheme requires that at least 1 m of fill materials are to be placed on existing soils (post stripping of topsoil) in order to reach design levels to meet minimum floor levels stipulated in the site specific planning requirements. Therefore, the influence of this additional loading will have an effect on the performance of any foundation or ground improvement options presented below.

5.1.1 Spread Foundations

As stated in the previous investigation, shallow subsurface soils may be suitable for low bearing capacity traditional foundations. However due to the requirement for site levels to be raised by up to 1.7 m of using imported materials (As detailed in Appendix A) the underlying soil is expected to be excessively loaded, thus negating their use.

5.1.2 Raft Foundation

Raft foundations may also be considered for the site, but would need to be designed for a low bearing capacity, in the region of $30-40 \mathrm{kN} / \mathrm{m}^{2}$. This bearing capacity would effectively be restrained by the quality of the imported fill materials as well as the presence of the underlying compressible silts and clay. Consideration should also be given to the presence of these soft materials throughout the top 6.0 m of the soil profile, settlements in excess 30 mm are to be expected with the predicted loadings related to the requirement for raising of site levels any further addition to this loading may result in settlements deemed unacceptable.

5.2 Ground Improvement

5.2.1 Vibro-Compaction

Vibro-compaction is a ground improvement technique that works by re-arranging the grains of a granular soil into a denser configuration by vibrating them to depth with a specially designed tool. This technique is only suitable for granular soils and is not recommended for this site due to the presence of cohesive soils throughout the soil profile as well as the requirement to raise levels.

5.2.2 Vibro Stone Columns

Vibro Stone Columns work on a similar principal to the vibro-compaction technique, however a hollow vibrating poker is used to create a cavity in the soil which is then backfilled with hard inert stone, free of clay and silt fines. The technique requires the host soils to be capable of retaining the stone inserted and subsequently compacted.

The soft silts and clays present at the targeted improvement depths are likely to be unsuitable for the insertion of stone columns as they are of low strength and may not provide the lateral confinement required for the columns to be formed. However, specialist advice on the suitability of this technique from a ground improvement contractor should be sought.

Specialist contractors suggest that this technique is not suitable for 'organic soils, peat and very soft clays'.

5.2.3 Vibro-Concrete Columns

Vibro Concrete Columns (VCC) offer a ground improvement method similar to the above without the risk of losing the included material amongst the soft soils. This is achieved by the insertion of fresh concrete into the hole via the vibro poker head with the additional control of designed pumping and withdrawal rates. This technique may be suitable and may present a cost effective alternative solution to traditional piling methods. However, it is a technique best suited for limited thicknesses of weak or soft soils, and the depths seen at this site may be too great, specialist advice on suitability from a ground improvement contractor should be sought.

5.2.4 Controlled Modulus Columns

Controlled Modulus Columns (CMC) are a semi-rigid inclusion similar to VCC whereby concrete grouting is undertaken after displacing the surrounding soils with a specially adapted hollow stem auger. This improvement method is designed to be applicable in difficult soil types such as peat and soft organic clays. The ultimate aim being an improved site in which standard strip footings could be installed with slabs-on-grade. This technique may be applicable at this site but given the application of a proprietary technology specialist advice on suitability and design from the contractor should be sought.

5.2.5 Piles

Given the low strength of the superficial soils and the requirement to raise site levels by in excess of 1.0 m across the area, the use of a piled foundation should be considered, and may well be the most appropriate, in order to transfer the load of the proposed buildings across the variable tidal flat deposits and into the underlying stiff clay.

Piles are considered likely to terminate in the underlying Ampthill Clay Formation, and carry their loads in a combination of end bearing and skin friction, although only limited positive contribution to pile capacity is likely through the Tidal Flat Deposits. Where levels are raised, the effects of negative skin friction will also need to be considered. Furthermore, it should be noted that the groundwater was recorded at shallow depth and care must be taken to ensure that the piling method provides sound piles below groundwater.

A preliminary assessment of potential pile capacities has been provided in the table below, although in view of the wide variety of piles sizes available, and the range of installation plant and techniques, the design of the piles should be carried out by, and should remain the responsibility of the specialist piling contractor, who will reflect their own methods, experience and design procedures within their proposals.
\(\left.$$
\begin{array}{|c|c|c|c|}\hline \text { Depth of Pile Below } \\
\text { Existing Ground Level } \\
\text { (m bgl) }\end{array}
$$ \begin{array}{c}Pile Length

(m bgl, allowing for

raising levels)\end{array}\right)\)| Allowable Working Load (kN) (CFA Pile) |
| :---: |
| |
| 10 |

It should be noted that the above pile capacities take into account the effect of negative skin friction due to raising of levels and consolidation of underlying soft soils. Reductions as based on a raise in levels by 1.5 m using a compressible fill as well as a groundwater level 2 m below existing.

5.3 Ground Floor Construction

Given the presence of low strength soils and the requirement to raise levels throughout the proposed development, the use of suspended ground floor construction is recommended.

5.4 Settlement Assessment

As detailed above, it is intended that levels will be raised across the site, predominantly to relieve flood risk issues. This will lead to settlement of the underlying sensitive soils, particularly given their very soft to soft nature.

A summary of approximate settlement undertaken for subsurface soils present in relation to potential loadings is included within the following table:

$\left.\begin{array}{c}\text { Applied Vertical } \\ \text { Stress (kN/ } \mathbf{m}\end{array}\right)$	Potential Magnitude of Total Settlement (mm)
$10(0.5 \mathrm{~m}$ fill $)$	$5-10$
$20(1.0 \mathrm{~m}$ fill $)$	$15-20$
$30(1.5 \mathrm{~m}$ fill $)$	$20-25$
$40(2.0 \mathrm{~m}$ fill $)$	$30-35$

This table indicates the calculated range of magnitude of total settlement of the underlying soils expected for a defined load; which have been estimated to represent potential construction scenarios given the nature of current development proposals. The settlements for loadings of up to $40 \mathrm{kN} / \mathrm{m}^{2}$ are presented to show anticipated settlement resulting from raising site levels. The range in magnitudes has been calculated using 'typical' and 'worst case' consolidation factors reported by the laboratory for soils at a given depth, which gives an indication of potential variation in settlement which could be expected depending on the composition of the soils recovered.

5.5 Impacts of Settlement

Services will have to be designed to allow for settlement in the range of the above quoted figures. Particular consideration should be given to the connections of services that run from proposed buildings (which are assumed to be piled) and external areas. The difference in settlements between these two locations will have to be allowed for in utility and service design.

5.6 Groundworks

5.6.1 Excavations

Whilst excavations in cohesive soils may remain stable for short periods during construction the long term stability of these and any excavations in made or disturbed ground should not be relied upon in unsupported excavations. Excavations in granular material will require proposer design and support.

Heavy plant and stockpiles of materials should not be permitted close to the edges of unsupported excavations.

Further reference may be made to CIRIA Report No. 97 'Trenching Practice' 1992.
On the basis of the findings of the ground investigation, significant quantities of groundwater are unlikely to be encountered within shallow excavations for foundations however in deeper excavations, such as may be required for drainage, some dewatering may be required.

5.6.2 Raising Levels

It is understood that around 1.5 m of fill material will be placed over the sites surface in order to raise levels. Detailed below are some generic recommendation for the filling process.

- In general, any fill should comply with the 'Manual of Contact Documents for Highways Works, Volume 1, Specification for Highways Works', amended November 2007. Compaction of the fill materials shall be in accordance with Table 6/4 of the Specification for Highways Works.
- Immediately prior to placing the first layer of fill, all surfaces upon which fill is to be placed should be cleaned of all objectionable materials in an approved manner. Such surfaces shall have all water removed from depressions and shall be properly monitored to obtain a suitable bond with the fill.
- Fill should be prepared by levelling, moistening (if required) and rolling so that the surface materials will be compacted and will provide a satisfactory bonding surface.
- Materials to be used for fill, which for whatever reason become, or when placed are too wet for immediate compaction shall be placed in temporary stockpiles or removed until the moisture content is reduced sufficiently to permit adequate compaction. Conversely, excavated material with a moisture content lower than that required, to ensure adequate compaction shall be wetted before placement.

Prior to placement, it is recommended that the fill shall be tested for the following:-

- Classification (Particle Size Distribution/Plasticity Index)
- Optimum Dry Density (2.5kg compaction)
- Natural Moisture Content
- Chemical Suitability

The in-situ competency of any fill should be checked at regular intervals to ensure that they are placed to the required effort.

5.7 Concrete Grade

Sulphate contents and pH values determinations were carried out by the analytical laboratory, the results of which are also included within Appendix D. Results for concrete grade are summarised within the following table, and have been divided into results applicable to soils recovered from both strata of natural soils to assess different properties of the two materials and subsequent design classifications.

Strata	Water Soluble Sulphate (mg/l SO4)		pH		Total Potential Sulphate (\%)	
	Min	Max	Min	Max	Min	Max
Tidal Flat Deposits	37.2	194.9	8.35	8.63	NA	
Ampthill Clay	217.8	326.5	8.46	9.09	2.91	11.4

The above suggest that Tidal Flat Deposits have a Design Sulphate Class (DS) of DS-1 with an aggressive chemical environment for concrete (ACEC) of AC-1.

For the lower Ampthill Clay, a classification of DS-5 and AC-4s is given, which is a particularly high concrete grade and will require special protective measures. This classification is based on analysis of 6 samples taken from across the depth of the unit, all of which had Total Potential Sulphate levels within the DS- 5 classification.

It should be noted that the classification for the Ampthill Clay (DS-5, AC-4s) has been driven by the total potential sulphate value. The values for pH and the water-soluble sulphate, however, give a class of DS-1 with AC-1s.

The most suitable class will ultimately depend on the nature of the final foundation solution, given the potential use of piling at the site, it should be noted that the BRE Special Digest 1 'Concrete in Aggressive Ground' 2005 states "Concrete in pyritic ground which is initially low in soluble sulphate does not have to be designed to withstand a high potential sulphate class unless it is exposed to ground which has been disturbed to the extent that contained pyrite might oxidise and the resultant sulphate ions reach the concrete. This may prompt redesign of the structure or construction process to avoid ground disturbance; for example, by using precast or cast in-situ piles instead of constructing a spread footing within an excavation".

Supplementary Ground Investigation
Middlegate Road West - Kirton
05
EPS Ref: UK16.2241 B

FIGURES

Supplementary Ground Investigation
Middlegate Road West - Kirton
ps
EPS Ref: UK16.2241 B

TABLES

Table 1 - Laboratory Testing Schedule (Geotechnical)

Sample ID	Top Depth (m bgl)	Moisture Content	Liquid / Plastic Limits	PSD	Triaxial Test	1D Consolid ation
BH01	3.20			1		
BH01	6.10	1	1			
BH01	6.70	1	1			
BH01	9.20				1	
BH01	15.20				1	
BH01	18.20				1	
BH02	7.90	1	1			
BH02	10.10				1	
BH02	13.10				1	
BH03	5.00			1		
BH03	6.75	1	1			
BH03	7.40			1		
BH03	8.50				1	
BH03	11.50				1	
BH04	8.50				1	
BH05	2.20			1		
BH05	4.20			1		
BH05	9.00				1	
BH05	18.00				1	
BH06	1.20					1
BH06	10.50	1	1			
BH06	13.50		1		1	

Notes	
mbgl	meters below ground level
$\mathbf{1}$	Sample Taken
-	Sample Not Analysed
PSD	Particle Size Distribution (by wet sieve)
CBR	California Bearing Ration Test
EPS Geotechnical Suite	Dissolved and Total Sulphates

Supplementary Ground Investigation
Middlegate Road West - Kirton

APPENDICES

APPENDIX A

Proposed Development Plans

APPENDIX B

Site Specific Borehole Logs

APPENDIX C

Geological Cross Sections

APPENDIX D

Laboratory Results-Geotechnical

TEST REPORT
ISSUED BY SOIL PROPERTY TESTING LTD
DATE ISSUED: 06/11/2018

Contract	UK16.2241B - Middlegate Road, Kirton	Target Date	05/11/2018
Serial No.	S33960		
Scheduled By	Environmental Protection Strategies Ltd		

SCHEDULE OF LABORATORY TESTS
Schedule Remarks

Plasticity Chart BS5930: 2015: Figure 8

Method of Preparation:	BS EN ISO: 17892-1: 2014 \& BS 1377: Part 2: 1990: 4.2
Method of Test:	BS EN ISO: 17892-1: 2014 \& BS1377: Part 2: 3.2, 4.4, 5.3, 5.4
Type of Sample Key:	U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter
Comments:	Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

0998

0998

0998

TEST REPORT
ISSUED BY SOIL PROPERTY TESTING LTD
DATE ISSUED: 06/11/2018

0998

TEST REPORT
ISSUED BY SOIL PROPERTY TESTING LTD
DATE ISSUED: 06/11/2018

TEST REPORT
ISSUED BY SOIL PROPERTY TESTING LTD
DATE ISSUED: 06/11/2018

0998

TEST REPORT
ISSUED BY SOIL PROPERTY TESTING LTD
DATE ISSUED: 06/11/2018

0998

TEST REPORT
ISSUED BY SOIL PROPERTY TESTING LTD
DATE ISSUED: 06/11/2018

0998

TEST REPORT
ISSUED BY SOIL PROPERTY TESTING LTD
DATE ISSUED: 06/11/2018

0998

TEST REPORT
ISSUED BY SOIL PROPERTY TESTING LTD
DATE ISSUED: 06/11/2018

0998

TEST REPORT
ISSUED BY SOIL PROPERTY TESTING LTD
DATE ISSUED: 06/11/2018

0998

Exova Jones Environmental

Unit 3 Deeside Point
Zone 3
Deeside Industrial Park
Deeside
CH5 2UA
EPS Ltd
7B Caxton House
Broad Street
Cambourne
Cambridgeshire
CB23 6JN

Tel: +44 (0) 1244833780
Fax: +44 (0) 1244833781

Attention :

Date:
Your reference :
Our reference :
Location :
Date samples received :
Status:
Issue :

Sam Setchell
2nd November, 2018

UK16.2241B

Test Report 18/17370 Batch 1
Kirton
27th October, 2018
Final report
1

Twelve samples were received for analysis on 27th October, 2018 of which twelve were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.
All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By

ithartrued

Lucas Halliwell

Project Co-ordinator

Exova Jones Environmental

Exova Jones Environmental

Client Name:	EPS Ltd
Reference:	UK16.2241B
Location:	Kirton
Contact:	Sam Setchell

Contact: Sam Setchell

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
18/17370	1	BH01	1.20-1.65	1	All analyses	No sampling date given
18/17370	1	BHO1	2.20-2.65	2	All analyses	No sampling date given
18/17370	1	BHO1	4.20-4.65	3	All analyses	No sampling date given
18/17370	1	BHO1	5.20-5.65	4	All analyses	No sampling date given
18/17370	1	BH01	6.20-6.65	5	All analyses	No sampling date given
18/17370	1	BHO1	7.70-8.15	6	All analyses	No sampling date given
18/17370	1	BH01	8.70	7	All analyses	No sampling date given
18/17370	1	BH01	10.20	8	All analyses	No sampling date given
18/17370	1	BHO1	11.70	9	All analyses	No sampling date given
18/17370	1	BH01	14.70	10	All analyses	No sampling date given
18/17370	1	BH01	16.20	11	All analyses	No sampling date given
18/17370	1	BH01	17.70	12	All analyses	No sampling date given

[^0]Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.:
SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.
Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.
If you have not already done so, please send us a purchase order if this is required by your company.
Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.
All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at $35^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ unless otherwise stated. Moisture content for CEN Leachate tests are dried at $105^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.
Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.
$\%$ Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of $\mathrm{NaOH}(0.1 \mathrm{~N})$ titrated (pH 8.3) is greater than the volume of $\mathrm{HCl}(1 \mathrm{~N})$ to reduce the pH of the sample to 2.0-2.5. Any negative NP values are corrected to 0 .
The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .
ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.
Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are $70-130 \%$ and for VOCs are $50-150 \%$. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.
Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

ABBREVIATIONS and ACRONYMS USED

\#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa.
B	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to an Exova Jones Environmental approved laboratory.
AD	Samples are dried at $35^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
CO	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
TB	Trip Blank Sample
OC	Outside Calibration Range

JE Job No: 18/17370

Test Method No.	Description	Prep Method No. (if appropriate)	Description	$\begin{array}{\|c\|} \hline \text { ISO } \\ \text { 17025 } \\ \text { (UKAS/S } \\ \text { ANAS) } \end{array}$	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM13	A visual examination of the solid sample is carried out to ascertain sample make up, colour and any other inclusions. This is not a geotechnical description.	PMO	No preparation is required.			AR	
тм30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 118852009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at $112.5^{\circ} \mathrm{C}$. Samples containing asbestos are not dried and ground.			AD	Yes
тм38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 ($\mathrm{NH} 4+$) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM20	Extraction of dried and ground or as received samples with deionised water in a $2: 1$ water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2 M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes	Yes	AD	Yes
TM50	Acid soluble sulphate (Total Sulphate) analysed by ICP-OES	PM29	Dried and ground solid sample is boiled with dilute hydrochloric acid, the resulting liquor is then analysed.	Yes	Yes	AD	Yes
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes	Yes	AR	No

Exova Jones Environmental

Unit 3 Deeside Point
Zone 3
Deeside Industrial Park
Deeside
CH5 2UA
EPS Ltd
7B Caxton House
Broad Street
Cambourne
Cambridgeshire
CB23 6JN

Tel: +44 (0) 1244833780
Fax: +44 (0) 1244833781

Attention :

Date:
Your reference :
Our reference :
Location :
Date samples received :
Status:
Issue :

Sam Setchell
2nd November, 2018

UK16.2241B

Test Report 18/17370 Batch 1
Kirton
27th October, 2018
Final report
1

Twelve samples were received for analysis on 27th October, 2018 of which twelve were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.
All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By

ithartrued

Lucas Halliwell

Project Co-ordinator

Exova Jones Environmental

Exova Jones Environmental

Client Name:	EPS Ltd
Reference:	UK16.2241B
Location:	Kirton
Contact:	Sam Setchell

Contact: Sam Setchell

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
18/17370	1	BH01	1.20-1.65	1	All analyses	No sampling date given
18/17370	1	BHO1	2.20-2.65	2	All analyses	No sampling date given
18/17370	1	BHO1	4.20-4.65	3	All analyses	No sampling date given
18/17370	1	BHO1	5.20-5.65	4	All analyses	No sampling date given
18/17370	1	BH01	6.20-6.65	5	All analyses	No sampling date given
18/17370	1	BHO1	7.70-8.15	6	All analyses	No sampling date given
18/17370	1	BH01	8.70	7	All analyses	No sampling date given
18/17370	1	BH01	10.20	8	All analyses	No sampling date given
18/17370	1	BHO1	11.70	9	All analyses	No sampling date given
18/17370	1	BH01	14.70	10	All analyses	No sampling date given
18/17370	1	BH01	16.20	11	All analyses	No sampling date given
18/17370	1	BH01	17.70	12	All analyses	No sampling date given

[^1]Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.:
SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.
Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.
If you have not already done so, please send us a purchase order if this is required by your company.
Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.
All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at $35^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ unless otherwise stated. Moisture content for CEN Leachate tests are dried at $105^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.
Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.
$\%$ Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of $\mathrm{NaOH}(0.1 \mathrm{~N})$ titrated (pH 8.3) is greater than the volume of $\mathrm{HCl}(1 \mathrm{~N})$ to reduce the pH of the sample to 2.0-2.5. Any negative NP values are corrected to 0 .
The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .
ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.
Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are $70-130 \%$ and for VOCs are $50-150 \%$. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.
Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

ABBREVIATIONS and ACRONYMS USED

\#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa.
B	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to an Exova Jones Environmental approved laboratory.
AD	Samples are dried at $35^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
CO	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
TB	Trip Blank Sample
OC	Outside Calibration Range

JE Job No: 18/17370

Test Method No.	Description	Prep Method No. (if appropriate)	Description	$\begin{array}{\|c\|} \hline \text { ISO } \\ \text { 17025 } \\ \text { (UKAS/S } \\ \text { ANAS) } \end{array}$	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM13	A visual examination of the solid sample is carried out to ascertain sample make up, colour and any other inclusions. This is not a geotechnical description.	PMO	No preparation is required.			AR	
тм30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 118852009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at $112.5^{\circ} \mathrm{C}$. Samples containing asbestos are not dried and ground.			AD	Yes
тм38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 ($\mathrm{NH} 4+$) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM20	Extraction of dried and ground or as received samples with deionised water in a $2: 1$ water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2 M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes	Yes	AD	Yes
TM50	Acid soluble sulphate (Total Sulphate) analysed by ICP-OES	PM29	Dried and ground solid sample is boiled with dilute hydrochloric acid, the resulting liquor is then analysed.	Yes	Yes	AD	Yes
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes	Yes	AR	No

[^0]: Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

[^1]: Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

